New bio-based thermoplastic polyurethane elastomers from isosorbide and rapeseed oil derivatives

Industrial Crops and Products - Tập 121 - Trang 303-312 - 2018
Héloïse Blache1, Françoise Méchin1, Alain Rousseau1, Étienne Fleury1, Jean-Pierre Pascault1, Pierre Alcouffe1, Nicolas Jacquel2, René Saint-Loup2
1Univ Lyon, INSA-Lyon, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F- 69621, Villeurbanne Cedex, France
2Roquette Frères, Polymer Chemistry Department, 62136 Lestrem, France

Tài liệu tham khảo

Balko, 2017, Clarifying the origin of multiple melting of segmented thermoplastic polyurethanes by fast scanning calorimetry, Macromolecules, 50, 7672, 10.1021/acs.macromol.7b00871 Besse, 2013, Synthesis of isosorbide based polyurethanes: an isocyanate free method, React. Funct. Polym., 73, 588, 10.1016/j.reactfunctpolym.2013.01.002 Bueno-Ferrer, 2012, Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids, Polym. Degrad. Stab., 97, 1964, 10.1016/j.polymdegradstab.2012.03.002 Bueno-Ferrer, 2012, Structure and morphology of new bio-based thermoplastic polyurethanes obtained from dimeric fatty acids, Macromol. Mater. Eng., 297, 777, 10.1002/mame.201100278 Calvo-Correas, 2016, Synthesis and characterization of polyurethanes with high renewable carbon content and tailored properties, ACS Sustain. Chem. Eng., 4, 5684, 10.1021/acssuschemeng.6b01578 Carré, 2014, Original biobased nonisocyanate polyurethanes: solvent- and catalyst-free synthesis, thermal properties and rheological behavior, RSC Adv., 4, 54018, 10.1039/C4RA09794G Carré, 2015, Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures, RSC Adv., 5, 100390, 10.1039/C5RA17638G Carré, 2016, Synthesis and characterization of advanced biobased thermoplastic nonisocyanate polyurethanes, with controlled aromatic-aliphatic architectures, Eur. Polym. J., 84, 759, 10.1016/j.eurpolymj.2016.05.030 Charlon, 2014, Synthesis, structure and properties of fully biobased thermoplastic polyurethanes obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols, Eur. Polym. J., 61, 197, 10.1016/j.eurpolymj.2014.10.012 Christenson, 1986, Model MDI/butanediol polyurethanes: molecular structure, morphology, physical and mechanical properties, J. Polym. Sci. Part B Polym. Phys., 24, 1401, 10.1002/polb.1986.090240703 Cognet-Georjon, 1995, New polyurethanes based on diphenylmethane diisocyanate and 1,4: 3,6-dianhydrosorbitoI, 1. Model kinetic studies and characterization of the hard segment, Macromol. Chem. Phys., 196, 3733, 10.1002/macp.1995.021961125 Cognet-Georjon, 1996, New polyurethanes based on 4, 4’-diphenylmethane diisocyanate and 1, 4:3, 6 dianhydrosorbitol, 2. Synthesis and properties of segmented polyurethane elastomers, Macromol. Chem. Phys., 197, 3593, 10.1002/macp.1996.021971109 Cuvé, 1992, Synthesis and properties of polyurethanes based on polyolefin: II. Semi-crystalline segmented polyurethanes prepared under heterogeneous or homogeneous synthesis conditions, Polymer, 33, 3957, 10.1016/0032-3861(92)90389-E Dirlikov, S.K., Schneider, C.J., 1984. Polyurethanes based on 1;4-3:6 dianhydrohexitols. US Patent 4443563. Fenouillot, 2010, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review, Prog. Polym. Sci., 35, 578, 10.1016/j.progpolymsci.2009.10.001 Fernández-d’Arlas, 2016, Tailoring the morphology and melting points of segmented thermoplastic polyurethanes by self-nucleation, Macromolecules, 49, 7952, 10.1021/acs.macromol.6b01527 Flèche, 1986, Isosorbide. Preparation, properties and chemistry, Starch – Stärke, 38, 26, 10.1002/star.19860380107 Ionescu, 2011, New isosorbide derivatives for bio-based polyurethanes, 144 Javni, 2015, Thermoplastic polyurethanes with isosorbide chain extender, J. Appl. Polym. Sci., 132, 42830, 10.1002/app.42830 Javni, 2015, Thermoplastic polyurethanes with controlled morphology based on methylene diphenyl diisocyanate/isosorbide/butanediol hard segments, Polym. Int., 64, 1607, 10.1002/pi.4960 Kim, 2014, Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties, J. Biomater. Appl., 29, 454, 10.1177/0885328214533737 Klinedinst, 2012, The effect of varying soft and hard segment length on the structure-property relationships of segmented polyurethanes based on linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments, Polymer, 53, 5358, 10.1016/j.polymer.2012.08.005 Koberstein, 1992, Multiple melting in segmented polyurethane block copolymers, Macromolecules, 25, 5618, 10.1021/ma00047a010 Lee, 2009, Synthesis, characterization, and properties of polyurethanes containing 1,4:3,6-dianhydro-D-sorbitol, J. Polym. Sci. Part A Polym. Chem., 47, 6025, 10.1002/pola.23645 Li, 2012, Studies of 4,4'-diphenylmethane diisocyanate (MDI)/1,4-butanediol (BDO) based TPUs by in situ and moving-window two-dimensional correlation infrared spectroscopy: understanding of multiple DSC endotherms from intermolecular interactions and motion levels, Polymer, 53, 5423, 10.1016/j.polymer.2012.09.030 Li, 2014, Reactivity and regio-selectivity of renewable building blocks for the synthesis of water-dispersible polyurethane prepolymers, ACS Sustain. Chem. Eng., 2, 788, 10.1021/sc400459q Marìn, 2009, Carbohydrate-based poly(ester-urethane)s: a comparative study regarding cyclic alditols extenders and polymerization procedures, J. Appl. Polym. Sci., 114, 3723, 10.1002/app.30924 Marìn, 2012, Carbohydrate-based polyurethanes: a comparative study of polymers made from isosorbide and 1,4-butanediol, J. Appl. Polym. Sci, 123, 986, 10.1002/app.34545 Oh, 2015, Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties, J. Biomater. Appl., 30, 327, 10.1177/0885328215590054 Oulame, 2015, Renewable alternating aliphatic-aromatic poly(ester-urethane)s prepared from ferulic acid and bio-based diols, Eur. Polym. J., 63, 186, 10.1016/j.eurpolymj.2014.11.031 Park, 2013, Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility, J. Mater. Sci. Mater. Med., 24, 281, 10.1007/s10856-012-4814-0 Peebles, 1974, Sequence length distribution in segmented block copolymers, Macromolecules, 7, 872, 10.1021/ma60042a034 Peebles, 1976, Hard block length distribution in segmented block copolymers, Macromolecules, 9, 58, 10.1021/ma60049a010 Saiani, 2001, Origin of multiple melting endotherms in a high hard block content polyurethane: I. Thermodynamic investigation, Macromolecules, 34, 9059, 10.1021/ma0105993 Saiani, 2004, Origin of multiple melting endotherms in a high hard block content polyurethane: II. Structural investigation, Macromolecules, 37, 1411, 10.1021/ma034604+ Saiani, 2007, Origin of multiple melting endotherms in a high hard block content polyurethane: effect of annealing temperature, Macromolecules, 40, 7252, 10.1021/ma070332p Thiem, 1986, Synthesis and properties of polyurethanes derived from diaminodianhydroalditols, Makromol. Chem., 187, 2775, 10.1002/macp.1986.021871204 Tsui, 2009, Microporous biodegradable polyurethane membranes for tissue engineering, J. Mater. Sci. Mater. Med., 20, 1729, 10.1007/s10856-009-3722-4 Yilgör, 2015, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review, Polymer, 58, A1, 10.1016/j.polymer.2014.12.014