Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS

Computer Methods in Applied Mechanics and Engineering - Tập 197 - Trang 4104-4124 - 2008
T.J.R. Hughes1, A. Reali2,3,4, G. Sangalli5,4
1Institute for Computational Engineering and Sciences, University of Texas at Austin, USA
2Dipartimento di Meccanica Strutturale, Università degli Studi di Pavia, Italy
3European Centre for Training and Research in Earthquake Engineering, Pavia, Italy
4Istituto di Matematica Applicata e Tecnologie Informatiche del CNR, Pavia, Italy
5Dipartimento di Matematica, Università degli Studi di, Pavia, Italy

Tài liệu tham khảo

Ainsworth, 2004, Discrete dispersion relation for hp-version finite element approximation at high wave-number, SIAM J. Numer. Anal., 42, 553, 10.1137/S0036142903423460 Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Model Methods Appl. Sci., 16, 1, 10.1142/S0218202506001455 Brillouin, 1953 Chopra, 2001 Clough, 1993 E. Cohen, R.F. Riesenfeld, G. Elber, Geometric Modeling with Splines, A.K. Peters, 2001. Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007 Deraemaeker, 1999, Dispersion and pollution of the fem solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Methods Engrg., 46, 472, 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6 G.E. Farin, NURBS Curves and Surfaces: From Projective Geometry to Practical Use, A.K. Peters, 1995. Gomez, 2008, Isogeometric Analysis of the Cahn-Hilliard Phase Field Model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003 Harari, 1991, Finite element methods for the Helmholtz equation in an exterior domain: model problems, Comput. Methods Appl. Mech. Engrg., 87, 59, 10.1016/0045-7825(91)90146-W Harari, 1992, Galerkin/least-squares finite element methods for the reduced wave equation with nonreflecting boundary conditions in unbounded domains, Comput. Methods Appl. Mech. Engrg., 98, 411, 10.1016/0045-7825(92)90006-6 Hughes, 2000 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Ihlenburg, 1995, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Int. J. Numer. Methods Engrg., 38, 3745, 10.1002/nme.1620382203 Kwok, 2001, A critical evaluation of the resolution properties of B-spline and compact finite difference methods, J. Comput. Phys., 174, 510, 10.1006/jcph.2001.6919 Piegl, 1997 Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, J. Earthquake Engrg., 10, 1, 10.1080/13632460609350626 Richtmyer, 1967 Rogers, 2001 Surana, 2006, h, p, k least squares finite element processes for 1-D Helmholtz equation, Int. J. Comput. Methods Engrg. Sci. Mech., 7, 263, 10.1080/15502280500388284 Thompson, 1994, Complex wavenumber Fourier analysis of the p-version finite element method, Comput. Mech., 13, 255, 10.1007/BF00350228 Thompson, 2004, Acoustics, vol. 2 Thompson, 2006, A review of finite element methods for time-harmonic acoustics, J. Acoust. Soc. Amer., 119, 1315, 10.1121/1.2164987