The reliability of eyetracking to assess attentional bias to threatening words in healthy individuals

Springer Science and Business Media LLC - Tập 50 - Trang 1778-1792 - 2017
Ian W. Skinner1,2, Markus Hübscher1,2, G. Lorimer Moseley1,3, Hopin Lee1,2,4,5, Benedict M. Wand6, Adrian C. Traeger1,2,7, Sylvia M. Gustin1,8, James H. McAuley1,2
1Neuroscience Research Australia, Randwick, Australia
2Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
3Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
4School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
5Centre for Rehabilitation Research, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
6School of Physiotherapy, University of Notre Dame Australia, Fremantle, Australia
7Sydney Medical School, University of Sydney, Sydney, Australia
8School of Psychology, University of New South Wales, Sydney, Australia

Tóm tắt

Eyetracking is commonly used to investigate attentional bias. Although some studies have investigated the internal consistency of eyetracking, data are scarce on the test–retest reliability and agreement of eyetracking to investigate attentional bias. This study reports the test–retest reliability, measurement error, and internal consistency of 12 commonly used outcome measures thought to reflect the different components of attentional bias: overall attention, early attention, and late attention. Healthy participants completed a preferential-looking eyetracking task that involved the presentation of threatening (sensory words, general threat words, and affective words) and nonthreatening words. We used intraclass correlation coefficients (ICCs) to measure test–retest reliability (ICC > .70 indicates adequate reliability). The ICCs(2, 1) ranged from –.31 to .71. Reliability varied according to the outcome measure and threat word category. Sensory words had a lower mean ICC (.08) than either affective words (.32) or general threat words (.29). A longer exposure time was associated with higher test–retest reliability. All of the outcome measures, except second-run dwell time, demonstrated low measurement error (<6%). Most of the outcome measures reported high internal consistency (α > .93). Recommendations are discussed for improving the reliability of eyetracking tasks in future research.

Tài liệu tham khảo

Amir, N., Beard, C., Burns, M., & Bomyea, J. (2009). Attention modification program in individuals with generalized anxiety disorder. Journal of Abnormal Psychology, 118, 28–33. doi:10.1037/a0012589 Amir, N., Weber, G., Beard, C., Bomyea, J., & Taylor, C. T. (2008). The effect of a single-session attention modification program on response to a public-speaking challenge in socially anxious individuals. Journal of Abnormal Psychology, 117, 860–868. doi:10.1037/a0013445 Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32, 704–723. doi:10.1016/j.cpr.2012.09.004 Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 1–24. doi:10.1037/0033-2909.133.1.1 Bartko, J. J. (1991). Measurement and reliability: Statistical thinking considerations. Schizophrenia Bulletin, 17, 483–489. doi:10.1093/schbul/17.3.483 Charter, R. A., & Feldt, L. S. (2001). Meaning of reliability in terms of correct and incorrect clinical decisions: The art of decision making is still alive. Journal of Clinical and Experimental Neuropsychology, 23, 530–537. doi:10.1076/jcen.23.4.530.1227 Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6, 284–290. doi:10.1037/1040-3590.6.4.284 Crombez, G., Van Ryckeghem, D. M., Eccleston, C., & Van Damme, S. (2013). Attentional bias to pain-related information: A meta-analysis. Pain, 154, 497–510. doi:10.1016/j.pain.2012.11.013 Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. doi:10.1007/BF02310555 de Vet, H. C., Terwee, C. B., Knol, D. L., & Bouter, L. M. (2006). When to use agreement versus reliability measures. Journal of Clinical Epidemiology, 59, 1033–1039. doi:10.1016/j.jclinepi.2005.10.015 de Vet, H. C., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide (1st ed.). Cambridge: Cambridge University Press. Dear, B. F., Sharpe, L., Nicholas, M. K., & Refshauge, K. (2011). The psychometric properties of the dot-probe paradigm when used in pain-related attentional bias research. Journal of Pain, 12, 1247–1254. doi:10.1016/j.jpain.2011.07.003 Dehghani, M., Sharpe, L., & Nicholas, M. K. (2003). Selective attention to pain-related information in chronic musculoskeletal pain patients. Pain, 105, 37–46. doi:10.1016/s0304-3959(03)00224-0 Donaldson, C., Lam, D., & Mathews, A. (2007). Rumination and attention in major depression. Behaviour Research and Therapy, 45, 2664–2678. doi:10.1016/j.brat.2007.07.002 Duque, A. (2015). Double attention bias for positive and negative emotional faces in clinical depression: Evidence from an eye-tracking study. Journal of Behavior Therapy and Experimental Psychiatry, 46, 107–114. doi:10.1016/j.jbtep.2014.09.005 Farzin, F., Scaggs, F., Hervey, C., Berry-Kravis, E., & Hessl, D. (2011). Reliability of eye tracking and pupillometry measures in individuals with fragile X syndrome. Journal of Autism and Developmental Disorders, 41, 1515–1522. doi:10.1007/s10803-011-1176-2 Fashler, S. R., & Katz, J. (2014). More than meets the eye: Visual attention biases in individuals reporting chronic pain. Journal of Pain Research, 7, 557–570. doi:10.2147/JPR.S67431 Felmingham, K. L., Rennie, C., Manor, B., & Bryant, R. A. (2011). Eye tracking and physiological reactivity to threatening stimuli in posttraumatic stress disorder. Journal of Anxiety Disorders, 25, 668–673. doi:10.1016/j.janxdis.2011.02.010 Gao, X., Wang, Q., Jackson, T., Zhao, G., Liang, Y., & Chen, H. (2011). Biases in orienting and maintenance of attention among weight dissatisfied women: An eye-movement study. Behaviour Research and Therapy, 49, 252–259. doi:10.1016/j.brat.2011.01.009 Giraudeau, B., & Mary, J. Y. (2001). Planning a reproducibility study: How many subjects and how many replicates per subject for an expected width of the 95 per cent confidence interval of the intraclass correlation coefficient. Statistical Medicine, 20, 3205–3214. doi:10.1002/sim.935 Gliner, J. A., Morgan, G. A., & Harmon, R. J. (2001). Measurement reliability. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 486–488. doi:10.1097/00004583-200104000-00019 Guasch, M., Boada, R., Ferré, P., & Sánchez-Casas, R. (2013). NIM: A Web-based Swiss army knife to select stimuli for psycholinguistic studies. Behavior Research Methods, 45, 765–771. doi:10.3758/s13428-012-0296-8 Guyatt, G., Walter, S., & Norman, G. (1987). Measuring change over time: Assessing the usefulness of evaluative instruments. Journal of Chronic Diseases, 40, 171–178. doi:10.1016/0021-9681(87)90069-5 Jensen, M. P., Johnson, L. E., Gertz, K. J., Galer, B. S., & Gammaitoni, A. R. (2013). The words patients use to describe chronic pain: Implications for measuring pain quality. Pain, 154, 2722–2728. doi:10.1016/j.pain.2013.08.003 Kimble, M. O., Fleming, K., Bandy, C., Kim, J., & Zambetti, A. (2010). Eye tracking and visual attention to threating stimuli in veterans of the Iraq war. Journal of Anxiety Disorders, 24, 293–299. doi:10.1016/j.janxdis.2009.12.006 Kopriva, R. J., & Shaw, D. G. (1991). Power estimates: The effect of dependent variable reliability on the power of one-factor ANOVAs. Educational and Psychological Measurement, 51, 585–595. doi:10.1177/0013164491513006 Kottner, J., & Streiner, D. L. (2011). The difference between reliability and agreement. Journal of Clinical Epidemiology, 64, 701–702. doi:10.1016/j.jclinepi.2010.12.001 Lakes, K. D. (2013). Restricted sample variance reduces generalizability. Psychological Assessment, 25, 643–650. doi:10.1037/a0030912 Lazarov, A., Abend, R., & Bar-Haim, Y. (2016). Social anxiety is related to increased dwell time on socially threatening faces. Journal of Affective Disorders, 193, 282–288. doi:10.1016/j.jad.2016.01.007 Liossi, C., Schoth, D. E., Godwin, H. J., & Liversedge, S. P. (2014). Using eye movements to investigate selective attention in chronic daily headache. Pain, 155, 503–510. doi:10.1016/j.pain.2013.11.014 Liversedge, & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive Sciences, 4, 6–14. doi:10.1016/S1364-6613(99)01418-7 Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355, 584–585. doi:10.1126/science.aal3618 Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the Depression Anxiety Stress Scales (2nd ed.). Sydney: Psychology Foundation. Marian, V., Blumenfeld, H. K., & Kaushanskaya, M. (2007). The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940–967. doi:10.1044/1092-4388(2007/067) Meyer, J. P. (2010). Reliability. New York: Oxford University Press. Mogg, K., Bradley, B. P., Field, M., & De Houwer, J. (2003). Eye movements to smoking-related pictures in smokers: Relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction, 98, 825–836. doi:10.1046/j.1360-0443.2003.00392.x Mogg, K., Bradley, B., Miles, F., & Dixon, R. (2004). Time course of attentional bias for threat scenes: Testing the vigilance–avoidance hypothesis. Cognition and Emotion, 18, 689–700. doi:10.1080/02699930341000158 Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., … & de Vet, H. C. W. (2010). The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. Journal of Clinical Epidemiology, 63, 737–745. doi:10.1016/j.jclinepi.2010.02.006 Nunnally, J. C. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. Price, R. B., Kuckertz, J. M., Siegle, G. J., Ladouceur, C. D., Silk, J. S., Ryan, N. D., … & Amir, N. (2015). Empirical recommendations for improving the stability of the dot-probe task in clinical research. Psychological Assessment, 27, 365–376. doi:10.1037/pas0000036 Radach, R., & Kennedy, A. (2004). Theoretical perspectives on eye movements in reading: Past controversies, current issues, and an agenda for future research. European Journal of Cognitive Psychology, 16, 3–26. doi:10.1080/09541440340000295 Rayner, K. (1989). In A. Pollatsek (Ed.), Psychology of reading. New Jersey: Prentice Hall. Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., … & Lenze, E. J. (2016). Unreliability as a threat to understanding psychopathology: The cautionary tale of attentional bias. Journal of Abnormal Psychology, 125, 840–851. doi:10.1037/abn0000184 Schmukle, S. C. (2005). Unreliability of the dot probe task. European Journal of Personality, 19, 595–605. doi:10.1002/per.554 Scholtes, V. A., Terwee, C. B., & Poolman, R. W. (2011). What makes a measurement instrument valid and reliable? Injury, 42, 236–240. doi:10.1016/j.injury.2010.11.042 Sharpe, L., Haggman, S., Nicholas, M., Dear, B. F., & Refshauge, K. (2014). Avoidance of affective pain stimuli predicts chronicity in patients with acute low back pain. Pain, 155, 45–52. doi:10.1016/j.pain.2013.09.004 Sharpe, L., Ianiello, M., Dear, B. F., Nicholson Perry, K., Refshauge, K., & Nicholas, M. K. (2012). Is there a potential role for attention bias modification in pain patients? Results of 2 randomised, controlled trials. Pain, 153, 722–731. doi:10.1016/j.pain.2011.12.014 Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. doi:10.1037/0033-2909.86.2.420 Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 1359–1366. doi:10.1177/0956797611417632 Open Science Framework. (MT3K8). Skinner, I. W., Hübscher, M., Moseley, G. L., Lee, H., Traeger, A., Wand, B. M., Gustin, S. M., & McAuley, J. (Eds.) (2016) The test- retest reliability of eye tracking to measure attentional bias. Retrieved from http://www.osf.io/mt3k8 doi:10.17605/OSF.IO/MT3K8 Streiner, D. L. (2003a). Being inconsistent about consistency: When coefficient alpha does and doesn’t matter. Journal of Personality Assessment, 80, 217–222. doi:10.1207/S15327752JPA8003_01 Streiner, D. L. (2003b). Health measurement scales: a practical guide to their development and use (3rd ed.). Oxford: Oxford University Press. Streiner, D. L. (2003c). Starting at the beginning: An introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80, 99–103. doi:10.1207/S15327752JPA8001_18 Sullivan, M., Bishop, S., & Pivik, J. (1995). The Pain Catastrophizing Scale: Development and validation. Psychological Assessment, 7, 524–532. doi:10.1037/1040-3590.7.4.524 Todd, J., Sharpe, L., Johnson, A., Nicholson Perry, K., Colagiuri, B., & Dear, B. F. (2015). Towards a new model of attentional biases in the development, maintenance, and management of pain. Pain, 156, 1589–1600. doi:10.1097/j.pain.0000000000000214 Todd, J., Sharpe, L., & Colagiuri, B. (2016). Attentional bias modification and pain: The role of sensory and affective stimuli. Behaviour Research and Therapy, 83, 53–61. doi:10.1016/j.brat.2016.06.002 Toh, W. L., Rossell, S. L., & Castle, D. J. (2011). Current visual scanpath research: A review of investigations into the psychotic, anxiety, and mood disorders. Comprehensive Psychiatry, 52, 567–579. doi:10.1016/j.comppsych.2010.12.005 Vazquez, C., Blanco, I., Sanchez, A., & McNally, R. J. (2016). Attentional bias modification in depression through gaze contingencies and regulatory control using a new eye-tracking intervention paradigm: Study protocol for a placebo-controlled trial. BMC Psychiatry, 16, 439. doi:10.1186/s12888-016-1150-9 Vervoort, T., Trost, Z., Prkachin, K. M., & Mueller, S. C. (2013). Attentional processing of other’s facial display of pain: An eye tracking study. Pain, 154, 836–844. doi:10.1016/j.pain.2013.02.017 Waechter, S., Nelson, A. L., Wright, C., Hyatt, A., & Oakman, J. (2014). Measuring attentional bias to threat: Reliability of dot probe and eye movement indices. Cognitive Therapy and Research, 38, 313–333. doi:10.1007/s10608-013-9588-2 Weir, J. P. (2005). Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, 19, 231–240. doi:10.1519/15184.1 White, L. K., Suway, J. G., Pine, D. S., Bar-Haim, Y., & Fox, N. A. (2011). Cascading effects: The influence of attention bias to threat on the interpretation of ambiguous information. Behaviour Research and Therapy, 49, 244–251. doi:10.1016/j.brat.2011.01.004 Yang, Z., Jackson, T., Gao, X., & Chen, H. (2012). Identifying selective visual attention biases related to fear of pain by tracking eye movements within a dot-probe paradigm. Pain, 153, 1742–1748. doi:10.1016/j.pain.2012.05.011 Yang, Z., Jackson, T., & Chen, H. (2013). Effects of chronic pain and pain-related fear on orienting and maintenance of attention: an eye movement study. Journal of Pain, 14, 1148–1157. doi:10.1016/j.jpain.2013.04.017