DFT study of glucose based glycolipid crown ethers and their complexes with alkali metal cations Na+ and K+
Tóm tắt
A theoretical study of a series of five glucose based glycolipid crown ethers and their complexes with Na+ and K+ was performed using the density functional theory with B3LYP/6-31 G* to obtain the optimized geometrical structures and electronic properties. The local nucleophilicity of the five molecules was investigated using Fukui function, while the global nucleophilicity was calculated from the ionization potential and electron affinity. The structures and coordination of the complexes were studied to identify the best match of the glycolipid crown ethers with cations. In general, it was found that the oxygen atoms pairs O2 and O3 (or O4 and O6) on the sugar ring are constrained from moving toward the cation, which results in a weaker O-cation coordination strength for the oxygen pair compared to the other oxygen atoms in the crown ether ring. The thermodynamic properties of the binding of the complexes and the exchange reaction in gas phase were evaluated. The cation selectivity pattern among the five molecules was in good agreement with the experiment.
Tài liệu tham khảo
Hashim R, Sugimura A, Minamikawa H, Heidelberg T (2011) Nature-like synthetic alkyl branched-chain glycolipids: a review on chemical structure and self-assembly properties. Liq Cryst 39(1):1–17. doi:10.1080/02678292.2011.614017
Dembitsky V (2004) Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols. Lipids 39(10):933–953. doi:10.1007/s11745-004-1316-1
William C (1987) Glycolipid function. BBA-Rev Biomembr 906(2):137–160. doi:10.1016/0304-4157(87)90009-8
Webb MS, Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. BBA-Bioenerg 1060(2):133–158. doi:10.1016/s0005-2728(09)91002-7
Krister H (2001) Natural surfactants. Curr Opin Coll Int Sci 6(2):148–159. doi:10.1016/s1359-0294(01)00074-7
Vill V, Hashim R (2002) Carbohydrate liquid crystals: structure–property relationship of thermotropic and lyotropic glycolipids. Curr Opin Coll Int Sci 7(5–6):395–409. doi:10.1016/s1359-0294(02)00091-2
Goodby JW, Gortz V, Cowling SJ, Mackenzie G, Martin P, Plusquellec D, Benvegnu T, Boullanger P, Lafont D, Queneau Y, Chambert S, Fitremann J (2007) Thermotropic liquid crystalline glycolipids. Chem Soc Rev 36(12):1971–2032. doi:10.1039/B708458G
Baron M (ed) (2007) Definitions of basic terms relating to low-molar-mass and polymer liquid crystals (UPAC Recommendations 2001). International Union of Pure and Applied Chemistry, 73(5), pp 845-895
Kitamoto D, Morita T, Fukuoka T, Konishi MA, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Coll Int Sci 14(5):315–328. doi:10.1016/j.cocis.2009.05.009
Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R (2011) Physicochemical characterization of natural-like branched-chain glycosides toward formation of hexosomes and vesicles. Langmuir 28(5):2395–2403. doi:10.1021/la203736b
Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036. doi:10.1021/ja01002a035
Pedersen CJ (1988) The discovery of crown ethers (Noble Lecture). Angew Chem Int Edit 27(8):1021–1027. doi:10.1002/anie.198810211
Cram DJ, Cram JM (1978) Design of complexes between synthetic hosts and organic guests. Acc Chem Res 11(1):8–14. doi:10.1021/ar50121a002
Bradshaw JS, Izatt RM (1997) Crown ethers: the search for selective ion ligating agents. Acc Chem Res 30(8):338–345. doi:10.1021/ar950211m
Gokel GW, Leevy WM, Weber ME (2004) Crown Ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104(5):2723–2750. doi:10.1021/cr020080k
Payer D, Rauschenbach S, Malinowski N, Konuma M, Virojanadara C, Starke U, Dietrich-Buchecker C, Collin J-P, Sauvage J-P, Lin N, Kern K (2007) Toward mechanical switching of surface-adsorbed [2] catenane by in situ copper complexation. J Am Chem Soc 129(50):15662–15667. doi:10.1021/ja075886m
Ruben M, Payer D, Landa A, Comisso A, Gattinoni C, Lin N, Collin J-P, Sauvage J-P, De Vita A, Kern K (2006) 2D supramolecular assemblies of benzene-1,3,5-triyl-tribenzoic acid: temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. J Am Chem Soc 128(49):15644–15651. doi:10.1021/ja063601k
Lehn J-M (2002) Toward complex matter: supramolecular chemistry and self-organization. Prog Natl Acad Sci USA 99(8):4763–4768. doi:10.1073/pnas.072065599
Gokel GW, Mukhopadhyay A (2001) Synthetic models of cation-conducting channels. Chem Soc Rev 30(5):274–286. doi:10.1039/B008667N
Barboiu M, Vaughan G, van der Lee A (2003) Self-organized heteroditopic macrocyclic superstructures. Org Lett 5(17):3073–3076. doi:10.1021/ol035096r
Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M (2006) Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J Am Chem Soc 128(29):9541–9548. doi:10.1021/ja061861w
Sabah K, Heidelberg T, Hashim R (2011) Novel crown ethers on glucose based glycolipids. Carbohydr Res 346(7):891–896. doi:10.1016/j.carres.2011.03.002
Israelachvili JN (1992) Intramolecular and surface forces. Academic, London
Avogadro: an open-source molecular builder and visualization tool. Version 1.0.3 http://avogadro.openmolecules.net/
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino JZ, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford
Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913
Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. doi:10.1103/PhysRevB.37.785
Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665. doi:10.1063/1.444267
Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109(4):1223–1229. doi:10.1063/1.476673
Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050. doi:10.1021/ja00326a036
Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108(19):5708–5711. doi:10.1021/ja00279a008
Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106(6):2065–2091. doi:10.1021/cr040109f
Domingo LR, Perez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9(20):7168–7175. doi:10.1039/C1OB05856H
Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. doi:10.1021/ic00277a030
Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Phys 1(1–6):104–113. doi:10.1016/s0031-8914(34)90011-2
Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi:10.1080/00268977000101561
Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105(24):11024–11031. doi:10.1063/1.472902
More MB, Ray D, Armentrout PB (1998) Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: bond dissociation energies of gas-phase m + −crown ether complexes. J Am Chem Soc 121(2):417–423. doi:10.1021/ja9823159
Hill SE, Feller D (2000) Theoretical study of cation/ether complexes: 15-crown-5 and its alkali metal complexes. Int J Mass Spectrom 201(1–3):41–58. doi:10.1016/s1387-3806(00)00214-1
Wang X, Wang H, Tan Y (2008) DFT study of the cryptand and benzocryptand and their complexes with alkali metal cations: Li+, Na+, K+. J Comput Chem 29(9):1423–1428. doi:10.1002/jcc.20903
Maleknia S, Brodbelt J (1992) Gas-phase selectivities of crown ethers for alkali metal ion complexation. J Am Chem Soc 114(11):4295–4298. doi:10.1021/ja00037a038
Izatt RM, Terry RE, Haymore BL, Hansen LD, Dalley NK, Avondet AG, Christensen JJ (1976) Calorimetric titration study of interaction of several univalent and bivalent-cations with 15-crown-5, 18-crown-6, and 2 isomers of dicyclohexo-18-crown-6 in aqueous-solution at 25 degreesc and mu = 0.1. J Am Chem Soc 98(24):7620–7626. doi:10.1021/ja00440a028
Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D (1985) Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 85(4):271–339. doi:10.1021/cr00068a003
Glendening ED, Feller D, Thompson MA (1994) An ab initio investigation of the structure and alkali metal cation selectivity of 18-Crown-6. J Am Chem Soc 116(23):10657–10669. doi:10.1021/ja00102a035
Feller D (1997) Ab initio study of M+:18-crown-6 microsolvation. J Phys Chem A 101(14):2723–2731. doi:10.1021/jp9700185
Bakó P, Fenichel L, Tôke L (1993) The complexing ability of crown ethers incorporating glucose. J Incl Phenom Macrocycl Chem 16(1):17–23. doi:10.1007/bf00708759
