Improving rail network velocity: A machine learning approach to predictive maintenance

Hongfei Li1, Dhaivat Parikh2, Qing He3, Buyue Qian4, Zhiguo Li1, Dongping Fang1, Arun Hampapur1
1IBM T. J. Watson Research Center, Yorktown Heights, NY, United States
2IBM Global Business Services, Dallas, TX, United States
3The State University of New York at Buffalo, Buffalo, NY, United States
4IBM T.J. Watson Research Center, Yorktown Heights, NY, United States

Tài liệu tham khảo

Ameen, P., 2006. AAR’s Technology Driven Train Inspection, <http://www.marts-rail.org/2006%20Prensentations/MARTS%209-19-06%20Ameen.pdf>. Breiman, 1984 Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Devore, 1995 Fletcher, 1987 Fransico, P., 2011. The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing and Analytics. IBM Red guide, <http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf>. Hajibabai, L., Saat, M.R., Ouyang, Y., Barkan, C.P., Yang, Z., Bowling, K., Somani, K., Lauro, D., Li, X., 2012. Wayside Defect Detector Data Mining to Predict Potential WILD Train Stops. In: Proceedings of American Railway Engineering and Maintenance-of-Way Association Annual Meeting, Chicago, IL, USA. Han, 2011 Hastie, 2001 Higginbotham, S., 2010. Sensor Networks Top Social Networks for Big Data, <http://gigaom.com/2010/09/13/sensor-networks-top-social-networks-for-big-data-2/>. Hothorn, 2006, Unbiased Recursive Partitioning: A Conditional Inference Framework, J. Comput. Graph. Stat., 15, 651, 10.1198/106186006X133933 Jardine, 2006, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Signal Process., 20, 1483, 10.1016/j.ymssp.2005.09.012 Jolliffe, 1986 Li, H., Qian, B., Parikh, D., Hampapur, A., 2013. Alarm Prediction in Large-scale Sensor Networks – A Case Study in Railroad. Big Data Conference 2013, pp. 7–14. Lin, 2005, A neural network application for reliability modeling and condition-based predictive maintenance, Int. J. Adv. Manuf. Technol., 25, 174, 10.1007/s00170-003-1835-3 Niu, 2010, Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance, Reliab. Eng. Syst. Safety, 95, 786, 10.1016/j.ress.2010.02.016 Ouyang, 2009, Optimal locations of railroad wayside defect detection installations, Comput. Aided Civil Infrastruct. Eng., 24, 1, 10.1111/j.1467-8667.2008.00584.x Salient Systems Inc., 2012. Preventing Train Derailment, <http://www.salientsystems.com>. Saxena, 2007, Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems, Appl. Soft Comput., 7, 441, 10.1016/j.asoc.2005.10.001 Yang, C., Létourneau, S., 2005. Learning to Predict Train Wheel Failures. In: Proceedings of the 11th ACM International Conference on Knowledge Discovery and Data Mining (KDD2005), Chicago, USA, August, pp. 516–525. Yella, 2009, Condition monitoring of wooden railway sleepers, Transport. Res. Part C: Emerging Technol., 17, 38, 10.1016/j.trc.2008.06.002 Yuan, 1995, Induction of fuzzy decision trees, Fuzzy Sets Syst., 69, 125, 10.1016/0165-0114(94)00229-Z