Improving rail network velocity: A machine learning approach to predictive maintenance
Tài liệu tham khảo
Ameen, P., 2006. AAR’s Technology Driven Train Inspection, <http://www.marts-rail.org/2006%20Prensentations/MARTS%209-19-06%20Ameen.pdf>.
Breiman, 1984
Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018
Devore, 1995
Fletcher, 1987
Fransico, P., 2011. The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing and Analytics. IBM Red guide, <http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf>.
Hajibabai, L., Saat, M.R., Ouyang, Y., Barkan, C.P., Yang, Z., Bowling, K., Somani, K., Lauro, D., Li, X., 2012. Wayside Defect Detector Data Mining to Predict Potential WILD Train Stops. In: Proceedings of American Railway Engineering and Maintenance-of-Way Association Annual Meeting, Chicago, IL, USA.
Han, 2011
Hastie, 2001
Higginbotham, S., 2010. Sensor Networks Top Social Networks for Big Data, <http://gigaom.com/2010/09/13/sensor-networks-top-social-networks-for-big-data-2/>.
Hothorn, 2006, Unbiased Recursive Partitioning: A Conditional Inference Framework, J. Comput. Graph. Stat., 15, 651, 10.1198/106186006X133933
Jardine, 2006, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Signal Process., 20, 1483, 10.1016/j.ymssp.2005.09.012
Jolliffe, 1986
Li, H., Qian, B., Parikh, D., Hampapur, A., 2013. Alarm Prediction in Large-scale Sensor Networks – A Case Study in Railroad. Big Data Conference 2013, pp. 7–14.
Lin, 2005, A neural network application for reliability modeling and condition-based predictive maintenance, Int. J. Adv. Manuf. Technol., 25, 174, 10.1007/s00170-003-1835-3
Niu, 2010, Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance, Reliab. Eng. Syst. Safety, 95, 786, 10.1016/j.ress.2010.02.016
Ouyang, 2009, Optimal locations of railroad wayside defect detection installations, Comput. Aided Civil Infrastruct. Eng., 24, 1, 10.1111/j.1467-8667.2008.00584.x
Salient Systems Inc., 2012. Preventing Train Derailment, <http://www.salientsystems.com>.
Saxena, 2007, Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems, Appl. Soft Comput., 7, 441, 10.1016/j.asoc.2005.10.001
Yang, C., Létourneau, S., 2005. Learning to Predict Train Wheel Failures. In: Proceedings of the 11th ACM International Conference on Knowledge Discovery and Data Mining (KDD2005), Chicago, USA, August, pp. 516–525.
Yella, 2009, Condition monitoring of wooden railway sleepers, Transport. Res. Part C: Emerging Technol., 17, 38, 10.1016/j.trc.2008.06.002
Yuan, 1995, Induction of fuzzy decision trees, Fuzzy Sets Syst., 69, 125, 10.1016/0165-0114(94)00229-Z
