Incorporating Graphitic Carbon Nitride (g‐C3N4) Quantum Dots into Bulk‐Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement

Advanced Functional Materials - Tập 26 Số 11 - Trang 1719-1728 - 2016
Xiang Chen1, Liu Qing1, Qiliang Wu1, Pingwu Du1, Jun Zhu2, Songyuan Dai2, Shangfeng Yang1
1Hefei National Laboratory for Physical Sciences at Microscale Key Laboratory of Materials for Energy Conversion Chinese Academy of Sciences Department of Materials Science and Engineering Synergetic Innovation Center of Quantum Information & Quantum Physics University of Science and Technology of China (USTC) Hefei 230026 P. R. China
2Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, P.R. China

Tóm tắt

Graphitic carbon nitride (g‐C3N4) has been commonly used as photocatalyst with promising applications in visible‐light photocatalytic water‐splitting. Rare studies are reported in applying g‐C3N4 in polymer solar cells. Here g‐C3N4 is applied in bulk heterojunction (BHJ) polymer solar cells (PSCs) for the first time by doping solution‐processable g‐C3N4 quantum dots (C3N4 QDs) in the active layer, leading to a dramatic efficiency enhancement. Upon C3N4 QDs doping, power conversion efficiencies (PCEs) of the inverted BHJ‐PSC devices based on different active layers including poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC61BM), poly(4,8‐bis‐alkyloxybenzo(l,2‐b:4,5‐b′)dithiophene‐2,6‐diylalt‐(alkyl thieno(3,4‐b)thiophene‐2‐carboxylate)‐2,6‐diyl):[6,6]‐phenyl C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM), and poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐3‐fluorothieno [3,4‐b]thiophene‐2‐carboxylate] (PTB7‐Th):PC71BM reach 4.23%, 6.36%, and 9.18%, which are enhanced by ≈17.5%, 11.6%, and 11.8%, respectively, compared to that of the reference (undoped) devices. The PCE enhancement of the C3N4 QDs doped BHJ‐PSC device is found to be primarily attributed to the increase of short‐circuit current (Jsc), and this is confirmed by external quantum efficiency (EQE) measurements. The effects of C3N4 QDs on the surface morphology, optical absorption and photoluminescence (PL) properties of the active layer film as well as the charge transport property of the device are investigated, revealing that the efficiency enhancement of the BHJ‐PSC devices upon C3N4 QDs doping is due to the conjunct effects including the improved interfacial contact between the active layer and the hole transport layer due to the increase of the roughness of the active layer film, the facilitated photoinduced electron transfer from the conducting polymer donor to fullerene acceptor, the improved conductivity of the active layer, and the improved charge (hole and electron) transport.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201500033

10.1039/C4GC01847H

10.1002/anie.201101182

10.1039/c2ee03479d

10.1039/b800274f

10.1039/C4NR03008G

10.1126/science.aaa3145

10.1038/nmat2317

10.1038/nphoton.2012.11

10.1002/adma.201303391

10.1016/j.orgel.2015.01.014

10.1002/smll.201402883

10.1039/C4CS00227J

Xu J. S., 2014, J. Am. Chem. Soc., 136, 1348

10.1021/am3009482

10.1038/nmat1849

10.1002/adma.201001068

10.1126/science.1246501

10.1002/aenm.201300574

Liu J., 2014, Energy Environ. Sci., 7, 129

10.1002/adma.201102735

10.1002/adma.201100304

10.1039/C4CS00455H

10.1021/nn4001963

10.1021/acs.jpcc.5b02543

10.1039/C4CC02543A

10.1002/adma.201400111

10.1002/anie.201403375

10.1021/nn506701x

10.1016/j.carbon.2013.10.037

10.1039/C5NR00665A

10.1002/smll.201403535

10.1021/ja9004514

10.1063/1.4893994

10.1016/j.matchemphys.2014.09.054

10.1063/1.2945281

10.1016/j.nanoen.2013.12.010

10.1016/j.solmat.2014.10.004

10.1063/1.3028094

10.1039/C3NR04418A

10.1038/nphoton.2015.126

10.1021/cm5028833

10.1002/adma.201404535

10.1021/jacs.5b02168

10.1063/1.2735937

10.1126/science.258.5087.1474

10.1016/j.orgel.2014.06.035

10.1016/j.solmat.2012.01.013

10.1039/C5TA00930H

10.1039/C4TC01558D

10.1016/j.solmat.2010.12.026

10.1002/adma.201404172

10.1103/PhysRevLett.94.126602