QuantumSU(2) andE(2) groups. Contraction procedure

S. L. Woronowicz1
1Lyon I, Institute of Mathematics, U.R.A. CNRS no 746, Claude Bernard University, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baaj, S., Julg, P.: Théorie bivariant de Kasparow et opérateur non bornés dans lesC *-modules hilbertiens. C. R. Acad. Sci. Paris, Série I,296, 875–878 (1983), see also Baaj, S.: Multiplicateurs non bornés, Thèse 3ème Cycle, Université Paris VI, 11 Decembre 1980

Barut, A.O., Raczka, R.: Theory of group representations and applications. Warszawa: PWN-Polish Scientific Publishers 1977

Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: Three-dimensional quantum groups from contractions ofSU(2)q. J. Math. Phys.31, 2548–2551 (1990)

Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: The quantum Heisenberg groupH(1) q . J. Math. Phys.32, 1155–1158 (1991)

Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: The three-dimensional Euclidean quantum groupE(3)q, and itsR-matrix. J. Math. Phys.32, 1159–1165 (1991)

Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: contractions of quantum groups. Proceedings of the semester ‘Quantum Groups’. Euler Math. Institute Leningrad Oct. Nov. 1990

Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA39, 510–524 (1956)

Gilmore, R.: Lie groups, Lie algebras and some of their applications. New York: Wiley 1974

Lukierski, J., Ruegg, H., Nowicki, A., Tolstoy, V.N.:q-deformation of Poincaré algebra. Phys. Lett. B264, (3,4), 331 (1991)

Pedersen, G.K.:C *-algebras and their automorphism groups. London, New York, San Francisco: Academic Press, 1979

Podleś, P.: Quantum spheres. Lett. Math. Phys.14, (3), 193–202 (1987)

Podleś, P., Woronowicz, S. L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)

Vallin, J.M.:C *-algèbres de Hopf etC *-algèbres de Kac. Proc. Lond. Math. Soc. (3) 1 (1985)

Woronowicz, S.L.: Pseudospaces, pseudogroups and Pontryagin duality. Proceedings of the International Conference on Mathematical Physics, Lausanne 1979. Lecture Notes in Physics, Vol. 116 pp. 407–412. Berlin, Heidelberg, New York: Springer

Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus. Publications of RIMS Kyoto University, Vol23, 117–181 (1987)

Woronowicz, S.L.: Unbounded elements affiliated withC *-algebras and non-compact quantum groups. Commun. Math. Phys.136, 399–432 (1991)

Woronowicz, S.L.: Operator equalities related to quantumE(2) group, Commun. Math. Phys.144, 417–428 (1992)

Woronowicz, S.L.: QuantumE(2)-group and its Pontryagin dual, Lett. Math. Phys.23, 251–263 (1991)