Manipulation of Phonon Transport in Thermoelectrics

Advanced Materials - Tập 30 Số 17 - 2018
Zhiwei Chen1, Xinyue Zhang1, Yanzhong Pei1
1Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Rd., Shanghai 201804, China

Tóm tắt

AbstractFor several decades, thermoelectric advancements have largely relied on the reduction of lattice thermal conductivity (κL). According to the Boltzmann transport theory of phonons, κL mainly depends on the specific heat, the velocity, and the scattering of phonons. Intensifying the scattering rate of phonons is the focus for reducing the lattice thermal conductivity. Effective scattering sources include 0D point defects, 1D dislocations, and 2D interfaces, each of which has a particular range of frequencies where phonon scattering is most effective. Because acoustic phonons are generally the main contributors to κL due to their much higher velocities compared to optical phonons, many low‐κL thermoelectrics rely on crystal structure complexity leading to a small fraction of acoustic phonons and/or weak chemical bonds enabling an overall low phonon propagation velocity. While these thermal strategies are successful for advancing thermoelectrics, the principles used can be integrated with approaches such as band engineering to improve the electronic properties, which can promote this energy technology from niche applications into the mainstream.

Từ khóa


Tài liệu tham khảo

10.1126/science.1158899

10.1038/nnano.2008.417

Oskotskii V., 1972, Defects in Crystals and Heat Conductivity

10.1007/978-3-642-00716-3

Ioffe A. F., 1957, Semiconductor Thermoelements, and Thermoelectric Cooling

10.1038/nmat2090

10.1002/adma.201103153

10.1002/aenm.201400486

Bhandari C. M., 1995, CRC Handbook of Thermoelectrics, 43

10.1038/nnano.2013.129

Yang J., 2016, npj Comput. Mater., 2, 10.1038/npjcompumats.2015.15

10.1103/PhysRevB.47.12727

10.1103/PhysRevB.53.R10493

10.1002/adma.200600527

10.1063/1.1379365

10.1038/nature09996

10.1016/j.jmat.2015.09.001

10.1039/C6EE02674E

10.1039/C4EE03042G

10.1039/C5TC03068D

10.1063/1.363405

10.1002/adma.201605887

10.1103/PhysRevB.11.1587

10.1016/0038-1098(68)90163-4

10.1103/PhysRevLett.108.166601

10.1126/science.1159725

10.1038/nature11439

10.1038/nature13184

10.1007/978-3-662-04569-5

10.1002/adma.201606768

10.1126/science.aaa4166

10.1038/nphys3542

Ziman J. M., 1960, Electrons and Phonons: The Theory of Transport Phenomena in Solids

10.1088/0370-1298/68/12/303

10.1002/adfm.201201576

10.1103/PhysRev.115.1107

10.1039/C6TA06033A

10.1063/1.3109788

10.1038/ncomms13828

10.1126/science.1156446

10.1002/advs.201600196

10.1016/j.joule.2017.09.006

10.1002/adfm.201503022

10.1038/nmat2273

10.1143/JPSJ.75.123602

Tritt T. M., 2005, Thermal Conductivity: Theory, Properties, and Applications

10.1016/S0081-1947(08)60359-8

10.1103/PhysRevB.7.5379

10.1021/cm901956r

10.1039/c0jm02011g

10.1103/PhysRevB.78.125205

10.1002/adfm.201606361

10.1002/adma.201400515

10.1038/nmat3273

Schwabl F., 2005, Advanced Quantum Mechanics

Simon S. H., 2013, The Oxford Solid State Basics, 1st ed

10.1039/c2ee21536e

10.1515/znb-1974-9-1012

Born M., 1912, Z. Phys., 13, 297

10.1002/andp.19293950803

10.1103/PhysRev.137.A128

10.1103/PhysRev.113.1046

10.1103/PhysRevB.4.3527

10.1103/PhysRev.132.2461

10.1115/1.1723469

Yang J., 2004, Thermal Conductivity: Theory, Properties and Applications, 1

10.1016/S0081-1947(08)60551-2

Lüth H., 2003, Solid‐State Physics: An Introduction to Principles of Materials Science

10.1201/b21468

10.1039/c1jm11754h

10.1038/nphys3492

10.1103/PhysRevLett.101.035901

10.1103/PhysRevB.77.245203

10.1002/anie.201508381

10.1039/C2EE23391F

10.1038/nmat3035

10.1038/ncomms4525

10.1016/j.ssc.2008.09.027

10.1103/PhysRevB.95.144302

10.1103/PhysRevB.93.104304

10.1038/ncomms12291

10.1103/PhysRevLett.107.175503

10.1126/science.aad8609

10.1103/PhysRevB.90.214303

10.1038/ncomms1969

10.1103/PhysRevLett.112.175501

10.1063/1.2937113

10.1063/1.3615709

10.1103/PhysRevB.81.085205

10.1088/0953-8984/15/31/303

10.1063/1.348408

10.1103/PhysRevB.74.045207

10.1016/S0022-3697(72)80273-7

10.1039/C5EE02600H

10.1073/pnas.1424388112

10.1002/adfm.201400123

10.1002/aenm.201300174

10.1016/S1369-7021(11)70278-4

Alekseeva G. T., 1971, Sov. Phys. – Semicond., 4, 1122

10.1039/C6EE02017H

10.1002/adfm.201400474

10.1134/S1063783408120020

10.1038/am.2017.8

Palchoudhuri S B. G. K., 1989, Solid State Commun., 70, 475, 10.1016/0038-1098(89)91083-1

10.1021/jacs.7b05143

10.1039/C5TA04418A

10.1016/j.actamat.2009.02.026

10.1063/1.2959103

10.1103/PhysRevB.59.8615

Rowe D. M., 2006, Thermoelectrics Handbook: Macro to Nano

10.1103/PhysRev.120.1149

10.1007/BF02655875

10.1002/adfm.201000878

10.1103/PhysRev.130.1743

10.1016/j.solidstatesciences.2008.01.016

10.1063/1.2172705

10.1021/acs.chemmater.6b02416

10.1007/s11664-010-1479-7

10.1021/acs.chemmater.5b03708

10.1039/C4CP01294A

10.1016/S1359-6454(01)00020-9

10.1002/aenm.201500411

10.1002/adfm.200901905

10.1039/df9572300122

Hollmon J., 1952, Imperfections in Nearly Perfect Crystals

10.1080/14786435808237028

10.1111/j.1151-2916.2001.tb00631.x

10.1016/j.nanoen.2017.03.012

10.1080/00018737500101401

Zhou Q., 2017, NPJ Comput. Mater., 3, 24, 10.1038/s41524-017-0030-2

10.1021/nl100804a

10.1021/nl8026795

10.1002/adma.201501030

10.1002/aenm.201500588

10.3390/nano2040379

10.1002/aenm.201100126

10.1038/ncomms12167

10.1038/nchem.955

10.1039/c3ee42187b

10.1002/aenm.201100770

10.1039/c1ee01928g

10.1021/nl104138t

10.1002/advs.201600035

10.1103/PhysRevB.91.214310

10.1039/C3EE43099E

10.1016/j.mattod.2013.05.004

10.1021/cm902195j

10.1002/adma.201605884

10.1002/aenm.201100207

10.1063/1.1735888

10.1002/adfm.201604145

10.1002/pssr.201004278

10.1143/JJAP.48.011603

Keiber T., 2015, Phys. Rev. B, 92, 134111, 10.1103/PhysRevB.92.134111

10.1103/PhysRevLett.86.2361

10.1038/ncomms7723

10.1103/PhysRevLett.114.095501

10.1103/PhysRevB.69.180511

10.1016/j.actamat.2015.03.032

10.1073/pnas.1410349111

10.1021/cm504398d

10.1007/0-387-25100-6_2

10.1038/nmat4739

10.1038/nmat1154

10.1039/c2ee22378c

10.1063/1.2009828

10.2320/matertrans.46.1502

10.1063/1.2181427

10.1103/PhysRevB.46.6131

10.1016/0038-1098(89)90630-3

10.1002/adma.200502770

10.1002/advs.201700341

Bilz H., 2012, Phonon Dispersion Relations in Insulators

10.1063/1.1631734

10.1103/PhysRevLett.68.1579

10.1016/0022-3697(73)90092-9

10.1126/science.1072886

10.1038/nature06381

10.1080/00018730802538522

10.1038/nmat3064

10.1103/PhysRevLett.101.075903

10.1038/ncomms4689

10.1002/aenm.201200514

10.1021/acsenergylett.7b00813