Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs

Nature Materials - Tập 7 Số 11 - Trang 907-915 - 2008
Jongseung Yoon1, Alfred J. Baca2, Sang-Il Park1, Paulius Elvikis3, Joseph B. Geddes4, Lanfang Li1, Rak-Hwan Kim1, Jianliang Xiao5, Shuodao Wang5, Tae‐Ho Kim1, Michael J. Motala2, Byung-Yoon Ahn2, Eric B. Duoss1, Jennifer A. Lewis1, Ralph G. Nuzzo1, Placid M. Ferreira3, Yonggang Huang5, Angus Rockett1, John A. Rogers4
1Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, USA
2Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
3Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, USA
4Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
5Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

Heine, C. & Morf, R. H. Submicrometer gratings for solar-energy applications. Appl. Opt. 34, 2476–2482 (1995).

Feng, N.-N. et al. Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells. IEEE Trans. Electron Devices 54, 1926–1933 (2007).

Wenham, S. R., Honsberg, C. B. & Green, M. A. Buried contact silicon solar cells. Sol. Energy Mater. Sol. Cells 34, 101–110 (1994).

Sinton, R. A., Kwark, Y., Gan, J. Y. & Swanson, R. M. 27.5-Percent silicon concentrator solar-cells. IEEE Electron Devices Lett. 7, 567–569 (1986).

Kerschaver, E. V. & Beaucarne, G. Back-contact solar cells: A Review. Prog. Photovolt. 14, 107–123 (2006).

Zhao, J. H., Wang, A. H. & Green, M. A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. 7, 471–474 (1999).

Biancardo, M. et al. Characterization of microspherical semi-transparent solar cells and modules. Sol. Energy 81, 711–716 (2007).

Liu, Z. X. et al. A concentrator module of spherical Si solar cell. Sol. Energy Mater. Sol. Cells 91, 1805–1810 (2007).

Minemoto, T. & Takakura, H. Fabrication of spherical silicon crystals by dropping method and their application to solar cells. Jpn. J. Appl. Phys. 46, 4016–4020 (2007).

Taguchi, M. et al. HIT (TM) cells—high-efficiency crystalline Si cells with novel structure. Prog. Photovolt. 8, 503–513 (2000).

Weber, K. J. et al. A novel low-cost, high-efficiency micromachined silicon solar cell. IEEE Electron Devices Lett. 25, 37–39 (2004).

Verlinden, P. J. et al. Sliver (R) solar cells: A new thin-crystalline silicon photovoltaic technology. Sol. Energy Mater. Sol. Cells 90, 3422–3430 (2006).

Brendel, R., Bergmann, R. B., Lolgen, P., Wolf, M. & Werner, J. H. Ultrathin crystalline silicon solar cells on glass substrates. Appl. Phys. Lett. 70, 390–392 (1997).

Brendel, R. Review of layer transfer processes for crystalline thin-film silicon solar cells. Jpn. J. Appl. Phys. 40, 4431–4439 (2001).

Tayanaka, H., Yamauchi, K. & Matsushita, T. Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer. Proc. 2nd World Conf. Photovolt. Sol. Energy Conv. 1272–1275 (Institute of Electrical and Electronics Engineers (IEEE), 1998).

Yamamoto, K. et al. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Appl. Phys. A 69, 179–185 (1999).

Shah, A. et al. Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE 569–574 (Institute of Electrical and Electronics Engineers (IEEE), 1997).

Bergmann, R. B. Crystalline Si thin-film solar cells: A review. Appl. Phys. A 69, 187–194 (1999).

Green, M. A. Crystalline and thin-film silicon solar cells: State of the art and future potential. Sol. Energy 74, 181–192 (2003).

Kazmerski, L. L. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. J. Electron Spectrosc. Relat. Phenom. 150, 105–135 (2006).

Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z. T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006).

Ko, H. C., Baca, A. J. & Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 6, 2318–2324 (2006).

Baca, A. J. et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17, 3051–3062 (2007).

Meitl, M. A. et al. Stress focusing for controlled fracture in microelectromechanical systems. Appl. Phys. Lett. 90, 083110 (2007).

Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

Lee, K. J. et al. Large-area, selective transfer of microstructured silicon: A printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 17, 2332–2336 (2005).

Wilson, R. G., Stevie, F. A. & Magee, C. W. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, 1989).

Hull, R. (ed.) Properties of Crystalline Silicon (The Institution of Electrical Engineers (IEE), 1999).

Budianu, E., Purica, M., Rusu, E., Manea, E. & Gavrila, R. Semiconductor Conf. 2002. CAS 2002 Proc. Int. Vol. 1 (Institute of Electrical and Electronics Engineers (IEEE), 2002).

Clugston, D. A. & Basore, P. A. Photovoltaic Specialists Conf. 1997., Conf. Record of the Twenty-Sixth IEEE 207–210 (Institute of Electrical and Electronics Engineers (IEEE), 1997).

Kunnavakkam, M. V. et al. Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process. Appl. Phys. Lett. 82, 1152–1154 (2003).