Semisimple Types in GLn

Wiley - Tập 119 - Trang 57-106 - 1999
Colin J. Bushnell1, Philip C. Kutzko2
1Department of Mathematics, King's College, Strand, London
2Department of Mathematics, University of Iowa, Iowa City, 52242. e-mail

Tóm tắt

This paper is concerned with the smooth representation theory of the general linear group G=GL(F) of a non-Archimedean local field F. The point is the (explicit) construction of a special series of irreducible representations of compact open subgroups, called semisimple types, and the computation of their Hecke algebras. A given semisimple type determines a Bernstein component of the category of smooth representations of G; that component is then the module category for a tensor product of affine Hecke algebras; every component arises this way. Moreover, all Jacquet functors and parabolic induction functors connecting G with its Levi subgroups are described in terms of standard maps between affine Hecke algebras. These properties of semisimple types depend on their special intertwining properties which in turn imply strong bounds on the support of coefficient functions.

Tài liệu tham khảo

Bernstein, J.-N.: Le ‘centre’ de Bernstein, in P. Deligne (ed.), Représentations des groupes réductifs sur un corps local, Paris, 1984, pp. 1–32. Bushnell, C. J.: Hereditary orders, Gauss sums and supercuspidal representations of GL(N), J. Reine Angew. Math. 375/376 (1987), 184–210. Bushnell, C. J. and Fröhlich, A.: Non-abelian congruence Gauss sums and p-adic simple algebras, Proc. London Math. Soc. (3) 50 (1985), 207–264. Bushnell, C. J. and Henniart, G.: Local tame lifting for GL(N) I: simple characters, Publ. Math. de l'IHES 83 (1996), 105–233. Bushnell, C. J. and Kutzko, P. C.: The Admissible Dual of GL(N) Via Compact Open Subgroups, Ann. of Math. Stud. 129, Princeton University Press, 1993. Bushnell, C. J. and Kutzko, P. C.: The admissible dual of SL(N) I, Ann. Sci. École Norm. Sup. 26(4) (1993), 261–279. Bushnell, C. J. and Kutzko, P. C.: The admissible dual of SL(N) II, Proc. London Math. Soc. 68(3) (1994), 317–379. Bushnell, C. J. and Kutzko, P. C.: Simple types in GL(N): computing conjugacy classes, in S. Gindikin et al. (eds), Representation Theory and Analysis on Homogeneous Spaces, Contemp. Math. 177, Amer. Math. Soc., Provident, 1995, pp. 107–135. Bushnell, C. J. and Kutzko, P. C.: Smooth representations of reductive p-adic groups: Structure theory via types, Proc. London Math. Soc., to appear. Jacquet, H., Piatetskii-Shapiro, I. I. and Shalika, J. A.: Rankin—Selberg convolutions, Amer. J. Math. 105 (1983), 367–483. Morris, L. E.: Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 1–54. Moy, A. and Prasad, G.: Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), 393–408. Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. Math. 106 (1984), 67–111.