Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation

Mary Hongying Cheng1, She Zhang1, Rebecca A. Porritt2,3, Magali Noval Rivas2,3, Lisa Paschold4, Edith Willscher4, Mascha Binder4, Moshe Arditi2,3, İvet Bahar1
1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
2Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
3Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
4Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany

Tóm tắt

SignificanceA hyperinflammatory syndrome reminiscent of toxic shock syndrome (TSS) is observed in severe COVID-19 patients, including children with Multisystem Inflammatory Syndrome in Children (MIS-C). TSS is typically caused by pathogenic superantigens stimulating excessive activation of the adaptive immune system. We show that SARS-CoV-2 spike contains sequence and structure motifs highly similar to those of a bacterial superantigen and may directly bind T cell receptors. We further report a skewed T cell receptor repertoire in COVID-19 patients with severe hyperinflammation, in support of such a superantigenic effect. Notably, the superantigen-like motif is not present in other SARS family coronaviruses, which may explain the unique potential for SARS-CoV-2 to cause both MIS-C and the cytokine storm observed in adult COVID-19.

Từ khóa


Tài liệu tham khảo

10.1016/j.cell.2020.02.058

10.1183/13993003.00749-2020

10.1038/s41577-020-0311-8

10.1016/j.immuni.2020.05.002

10.1016/S0140-6736(20)31094-1

10.1016/S0140-6736(20)31103-X

10.1161/CIRCULATIONAHA.120.048360

10.1016/j.ccc.2013.03.012

10.3201/eid2606.190783

10.1001/jama.2020.10369

10.1146/annurev.immunol.17.1.435

10.3390/toxins11030178

10.1146/annurev.cb.09.110193.000533

10.1073/pnas.86.22.8941

10.1111/j.1600-065X.2008.00681.x

10.1038/ncomms1117

10.1126/science.abb2507

10.1038/nprot.2016.169

10.1016/j.cell.2020.02.052

J.-P. Changeux, Z. Amoura, F. A. Rey, M. Miyara, A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. C. R. Biol. 343, 33–39 (2020).

10.1371/journal.pbio.1001149

10.3389/fimmu.2019.00942

10.1089/vim.2004.17.528

10.1126/science.abd3871

T. Sekine . Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 10.1016/j.cell.2020.08.017 (2020).

B. Korber . Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv:2020.2004.2029.069054 (15 June 2020).

S. H. Zhan B. E. Deverman Y. A. Chan SARS-CoV-2 is well adapted for humans. What does this mean for re-emergence? bioRxiv:2020.2005.2001.073262 (21 May 2020).

10.1016/j.immuni.2020.06.024

D. M. Del Valle . An inflammatory cytokine signature helps predict COVID-19 severity and death. medRxiv:10.1101/2020.05.28.20115758 (30 May 2020).

10.4049/jimmunol.181.8.5490

J.-I. Nishi ., B cell epitope mapping of the bacterial superantigen staphylococcal enterotoxin B: The dominant epitope region recognized by intravenous IgG. J. Immunol. 158, 247–254 (1997).

10.4049/jimmunol.1601525

10.1128/AAC.01015-09

10.1371/journal.pone.0013253

10.1074/jbc.M114.630715

10.1016/j.tips.2020.1007.1004

M. Ho, Perspectives on the development of neutralizing antibodies against SARS-CoV-2. Antib. Ther. 3, 109–114 (2020).

10.1126/science.abb7269

10.1038/s41586-020-2380-z

10.1126/science.abd0827

R. Shi ., A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 579, 270–273 (2020).

10.1126/science.abc6952

10.1038/s41586-020-2349-y

10.1016/j.cell.2020.05.025

10.1038/s41586-020-2548-6

10.1016/j.cell.2020.05.015

S. P. Weisberg Antibody responses to SARS-CoV2 are distinct in children with MIS-C compared to adults with COVID-19. medRxiv:10.1101/2020.07.12.20151068 (14 July 2020).

10.1128/JVI.00510-20

10.1128/AAC.45.2.460-463.2001

10.1093/infdis/124.2.206

10.1089/088282403763635465

10.1038/s41591-020-0817-4

10.1093/nar/gky427

10.1371/journal.ppat.1007236

10.1073/pnas.0407152101

M. C. Peitsch, Protein modeling by E-mail. Bio/technology 13, 658–660 (1995).

10.1002/jcc.20945

L. C. Xue, J. P. Rodrigues, P. L. Kastritis, A. M. Bonvin, A. Vangone, PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32, 3676–3678 (2016).

10.3389/fimmu.2019.01897

10.1080/2162402X.2019.1644110

10.1136/adc.2006.101030

10.3201/eid0903.020360

10.1182/blood.V90.9.3623

10.1006/jmbi.1997.1577