Rapid changes in the chemical composition of degrading ectomycorrhizal fungal necromass
Tài liệu tham khảo
Adamczyk, 2019, Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils, New Phytol., 223, 16, 10.1111/nph.15729
Allen, 2013, In situ high-frequency observations of mycorrhizas, New Phytol., 200, 222, 10.1111/nph.12363
Bartnicki-Garcia, 1968, Cell wall chemistry, morphogenesis, and taxonomy of fungi, Annu. Rev. Microbiol., 88
Berner, 1964, An idealized model of dissolved sulfate distribution recent sediments in, Geochem. Cosmochim. Acta, 28, 1497, 10.1016/0016-7037(64)90164-4
Brabcová, 2016, Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community, New Phytol., 210, 1369, 10.1111/nph.13849
Brabcová, 2018, Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities, Soil Biol. Biochem., 118, 187, 10.1016/j.soilbio.2017.12.012
Bruner, 2016
Bull, 1970, Inhibition of polysaccharases in relation by Melanin : to mycolysis enzyme inhibition, Arch. Biochem. Biophys., 345, 10.1016/0003-9861(70)90448-0
Butler, 1998, Fungal melanins: a review, Can. J. Microbiol., 44, 1115, 10.1139/w98-119
Calderón, 2006, Pyrolisis-MS and FT-IR analysis of fresh and decomposed dairy manure, J. Anal. Appl. Pyrol., 76, 14, 10.1016/j.jaap.2005.06.009
Certano, 2018, The afterlife effects of fungal morphology: contrasting decomposition rates between diffuse and rhizomorphic necromass, Soil Biol. Biochem., 126, 76, 10.1016/j.soilbio.2018.08.002
Clemmensen, 2013, Roots and associated fungi drive long-term carbon sequestration in boreal forest, Science, 339, 1615, 10.1126/science.1231923
Çoban-Yıldız, 2000, Application of pyrolysis–GC/MS for the characterisation of suspended particulate OM in the Mediterranean Sea: a comparison with the Black Sea, Org. Geochem., 31, 1627, 10.1016/S0146-6380(00)00098-X
Drigo, 2012, Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities, Soil Biol. Biochem., 49, 4, 10.1016/j.soilbio.2012.02.003
Feofilova, 2010, vol. 79, 711
Fernandez, 2019, Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming, Ecol. Lett., 22, 498, 10.1111/ele.13209
Fernandez, 2018, Melanization of mycorrhizal fungal necromass structures microbial decomposer communities, J. Ecol., 106, 468
Fernandez, 2014, Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter, Soil Biol. Biochem., 77, 150, 10.1016/j.soilbio.2014.06.026
Fernandez, 2013, The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress, Fungal Ecol., 6, 479, 10.1016/j.funeco.2013.08.004
Fernandez, 2012, The role of chitin in the decomposition of ectomycorrhizal fungal litter, Ecology, 93, 24, 10.1890/11-1346.1
Fernandez, 2016, The decomposition of ectomycorrhizal fungal necromass, Soil Biol. Biochem., 93, 38, 10.1016/j.soilbio.2015.10.017
Fogel, 1983, Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem, Can. J. For. Res., 13, 219, 10.1139/x83-031
Godbold, 2006, Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter, Plant Soil, 281, 15, 10.1007/s11104-005-3701-6
Hagenbo, 2017, Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequence, New Phytol., 214, 424, 10.1111/nph.14379
Hattenschwiler, 2019, The chitin connection of polyphenols and its ecosystem consequences, New Phytol., 223, 5, 10.1111/nph.15840
Henson, 1999, The dark side of the mycelium: melanins of phytopathogenic fungi, Annu. Rev. Phytopathol., 447, 10.1146/annurev.phyto.37.1.447
Högberg, 2002, Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil, New Phytol., 154, 791, 10.1046/j.1469-8137.2002.00417.x
Jobbagy, 2000, The vertical distribution of soil organic carbon and its relation to climate and vegetation the vertical distribution of soil organic carbon and its ecological applications, Ecol. Appl., 10, 423, 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
Kallenbach, 2016, Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls, Nat. Commun., 7, 1, 10.1038/ncomms13630
Koide, 2009, N concentration controls decomposition rates of different strains of ectomycorrhizal fungi, Fungal Ecol., 2, 197, 10.1016/j.funeco.2009.06.001
Kuo, 1967, Inhibition of the lysis of fungi by melanins, J. Bacteriol., 94, 624, 10.1128/JB.94.3.624-629.1967
López-Mondéjar, 2018, Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling, ISME J., 12, 1768, 10.1038/s41396-018-0084-2
Maillard F, Andrews A, Schilling J, Kennedy PG, in review. Functional convergence in the decomposition of fungal necromass in wood and soil, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol.
Pierce, 1995, A comparison of native and synthetic mushroom melanins by Fourier-transofm infrared spectroscopy, Phytochemistry, 39, 49, 10.1016/0031-9422(94)00837-J
Prados-Rosales, 2015, Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricula, J. Agric. Food Chem., 63, 7326, 10.1021/acs.jafc.5b02713
Schreiner, 2014, 155
Schweigert, 2015, Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation, Soil Biol. Biochem., 88, 120, 10.1016/j.soilbio.2015.05.012
Simpson, 2007, Microbially derived inputs to soil organic matter: are current estimates too low?, Environ. Sci. Technol., 41, 8070, 10.1021/es071217x
Six, 2002, Stabilization mechanisms of soil organic matter : implications for C-saturation of soils, Plant Soil, 241, 155, 10.1023/A:1016125726789
Smiderle, 2012, Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources, Carbohydr. Polym., 87, 368, 10.1016/j.carbpol.2011.07.063
Sun, 2018, Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition, Proc. Natl. Acad. Sci. Unit. States Am., 115, 10392, 10.1073/pnas.1716595115
Swift, 1979
van der Wal, 2009, Relative abundance and activity of melanized hyphae in different soil ecosystems, Soil Biol. Biochem., 41, 417, 10.1016/j.soilbio.2008.10.031
Wallander, 1992, Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of Pinus sylvestrus L. ectomycorrhiza, New Phytol., 120, 495, 10.1111/j.1469-8137.1992.tb01798.x
Webster, 1986, Vascular plant breakdown in freshwater ecosystems, Annu. Rev. Ecol. Systemat., 17, 567, 10.1146/annurev.es.17.110186.003031
Westrich, 1984, The role of sedimentary organic matter in bacterial sulfate reduction : the G model tested, Limonl. Oceanogr., 29, 236, 10.4319/lo.1984.29.2.0236
Wickings, 2012, The origin of litter chemical complexity during decomposition, Ecol. Lett., 15, 1180, 10.1111/j.1461-0248.2012.01837.x