Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: Experiments and molecular dynamics study
Tài liệu tham khảo
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081
Uporov, 2017, Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy, Intermetallics, 83, 1, 10.1016/j.intermet.2016.12.003
Ren, 2013, Formation condition of solid solution type high-entropy alloy, Trans. Nonferrous Metals Soc. China, 23, 991, 10.1016/S1003-6326(13)62557-1
Munitz, 2016, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloy. Comp., 683, 221, 10.1016/j.jallcom.2016.05.034
Manzoni, 2013, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy, Ultramicroscopy, 132, 212, 10.1016/j.ultramic.2012.12.015
Lim, 2017, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloy. Comp., 728, 1235, 10.1016/j.jallcom.2017.09.089
Wang, 2008, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A, 491, 154, 10.1016/j.msea.2008.01.064
Butler, 2016, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, J. Alloy. Comp., 674, 229, 10.1016/j.jallcom.2016.02.257
Varalakshmi, 2008, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloy. Comp., 460, 253, 10.1016/j.jallcom.2007.05.104
Suryanarayana, 2001, Mechanical alloying and milling, Prog. Mater. Sci., 46, 1, 10.1016/S0079-6425(99)00010-9
Ji, 2014, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloy. Comp., 589, 61, 10.1016/j.jallcom.2013.11.146
Mohanty, 2017, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties, Mater. Sci. Eng. A, 679, 299, 10.1016/j.msea.2016.09.062
Yang, 2016, High-Strength AlCrFeCoNi high entropy alloys fabricated by using metallic glass powder as precursor, Adv. Eng. Mater., 18, 348, 10.1002/adem.201500339
Zhang, 2016, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture, Mater. Lett., 181, 82, 10.1016/j.matlet.2016.06.014
Vaidya, 2017, Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying, Mater. Des., 126, 37, 10.1016/j.matdes.2017.04.027
Colombini, 2018, High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating, Mater. Chem. Phys., 210, 78, 10.1016/j.matchemphys.2017.06.065
Gaffet, 1999, Some recent developments in mechanical activation and mechanosynthesis, J. Mater. Chem., 9, 305, 10.1039/a804645j
Boldyrev, 2006, Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 75, 177, 10.1070/RC2006v075n03ABEH001205
Kiani, 2015, Effect of mechanical activation and microwave sintering on crystallization and mechanical strength of cordierite nanograins, Ceram. Int., 41, 2342, 10.1016/j.ceramint.2014.10.044
Tsokov, 1993, Effect of mechanical activation on the synthesis of α-Fe2O3-Cr2O3 solid solutions, J. Mater. Sci., 28, 184, 10.1007/BF00349050
Plimpton, 1995, Fast parallel algorithms for short–range molecular dynamics, J. Comput. Phys., 117, 42, 10.1006/jcph.1995.1039
Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B., 69, 10.1103/PhysRevB.69.144113
Lin, 2008, Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses, Phys. Rev. B., 77, 10.1103/PhysRevB.77.214108
Johnson, 1989, Alloy models with the embedded-atom method, Phys. Rev. B., 39, 12554, 10.1103/PhysRevB.39.12554
Odunuga, 2005, Forced chemical mixing in alloys driven by plastic deformation, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.045901
Perron, 2010, Oxidation of nanocrystalline aluminum by variable charge molecular dynamics, J. Phys. Chem. Solids, 71, 119, 10.1016/j.jpcs.2009.09.008
Stukowski, 2012, Structure identification methods for atomistic simulations of crystalline materials, Model. Simul. Mater. Sci. Eng., 20, 10.1088/0965-0393/20/4/045021
Li, 2004, Proposed definition of microchemical inhomogeneity and application to characterize some selected miscible/immiscible binary metal systems, J. Phys. Chem. B, 108, 16071, 10.1021/jp047897x
Wells, 1984
Wallenius, 2004, Modeling of chromium precipitation in Fe-Cr alloys, Phys. Rev. B., 69, 10.1103/PhysRevB.69.094103
Portnoi, 2014, Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr-Fe-Co-Ni-Al-Ti alloy, Inorg. Mater., 50, 1202, 10.1134/S0020168514120188
Burgio, 1991, Mechanical alloying of the Fe−Zr system. Correlation between input energy and end products, Il Nuovo Cimento D, 13, 459, 10.1007/BF02452130
Abdellaoui, 1995, The physics of mechanical alloying in a planetary ball mill: mathematical treatment, Acta Metall. Mater., 43, 1087, 10.1016/0956-7151(95)92625-7
Moravcik, 2016, Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy, Mater. Lett., 174, 53, 10.1016/j.matlet.2016.03.077
Rogachev, 2015, Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures, Powder Technol., 274, 44, 10.1016/j.powtec.2015.01.009
Rosenkranz, 2011, Experimental investigations and modelling of the ball motion in planetary ball mills, Powder Technol., 212, 224, 10.1016/j.powtec.2011.05.021
Cieslak, 2018, Phase composition of Al x FeNiCrCo high entropy alloys prepared by sintering and arc-melting methods, J. Alloy. Comp., 740, 264, 10.1016/j.jallcom.2017.12.333
Joo, 2017, Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering, J. Alloy. Comp., 698, 591, 10.1016/j.jallcom.2016.12.010
TCNI9, 2019, Thermo-Calc Ni-base alloys database
Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8
Koch, 1983, Preparation of ‘“amorphous”’ Ni 6 0 Nb 4 0 by mechanical alloying, Appl. Phys. Lett., 43, 1017, 10.1063/1.94213
Zhang, 2016, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des., 109, 425, 10.1016/j.matdes.2016.07.073
Manzoni, 2016, On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications, Entropy, 18, 104, 10.3390/e18040104
Shang, 2017, CoCrFeNi(W 1−x Mo x) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117, 193, 10.1016/j.matdes.2016.12.076
Gangireddy, 2019, Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC, Mater. Sci. Eng. A, 739, 158, 10.1016/j.msea.2018.10.021
