A novel melanocortin-4 receptor gene mutation in a female patient with severe childhood obesity

Endocrine - Tập 36 - Trang 52-59 - 2009
Christian L. Roth1, Michael Ludwig2, Joachim Woelfle3, Zhen-Chuan Fan4, Harald Brumm5, Heike Biebermann5, Ya-Xiong Tao4
1Division of Endocrinology, Seattle Children’s Hospital Research Institute, Seattle, USA
2Institute of Clinical Biochemistry and Pharmacology, University of Bonn, Bonn, Germany
3Children’s Hospital, University of Bonn, Bonn, Germany
4Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA
5Charite Campus Virchow, Institute of Experimental Pediatric Endocrinology, Berlin, Germany

Tóm tắt

This study targeted the identification of mutations of melanocortin-4 receptor gene (MC4R) in obese children. Fifty-one unrelated probands with early onset severe obesity (body mass index (BMI) >99th percentile; 21 girls, mean age 10.6 ± 3.6 years) were analyzed for nucleotide variations in the MC4R coding region, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. MC4R variants were detected in three patients: the known I169S variant was found in heterozygote state in two patients and a novel heterozygous Y302F mutation was detected in one 12-year-old girl (BMI = 34 kg/m2, BMI z-score 2.7) who has been overweight since the second year of life and suffered from hyperinsulinemia (at the age of 12: fasting insulin 45 mU/ml, after oral glucose load max. 300 mU/ml). The mutation also appears in the father, although both parents are obese (BMI father: 30.2 kg/m2; mother: 31.9 kg/m2). This novel mutation is located in the functionally important NPXXY motif of the seventh transmembrane domain of the receptor. Functional characterization revealed reduction in cell surface expression and an alteration in signal transduction properties. These results add to the growing list of loss-of-function MC4R mutations in early onset obese patients and suggest an orexigenic effect of novel Y302F mutation.

Tài liệu tham khảo

G.S. Barsh, I.S. Farooqi, S. O’Rahilly, Genetics of body-weight regulation. Nature 404, 644–651 (2000) I.S. Farooqi, G.S.H. Yeo, J.M. Keogh, S. Aminian, S.A. Jebb, G. Butler, T. Cheetham, S. O’Rahilly, Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000) C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, P. Froguel, Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000) A. Kask, L. Rago, J.E.S. Wikberg, H.M. Schioth, Evidence for involvement of the melanocortin MC4 receptor in the effects of leptin on food intake and body weight. Eur. J. Pharmacol. 360, 15–19 (1998) I. Gantz, H. Miwa, Y. Konda, Y. Shimoto, T. Tashiro, S.J. Watson, V. Del, J. Alle, T. Yamada, Molecular cloning, expression, and gene localisation of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179 (1993) R.D. Cone, Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005) M.W. Schwartz, R.J. Seeley, S.C. Woods, D.S. Weigle, L.A. Campfield, P. Burn, D.G. Baskin, Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997) D. Huszar, C.A. Lynch, V. Fairchild-Huntress, J.H. Dunmore, Q. Fang, L.R. Berkemeier, W. Gu, R.A. Kesterson, B.A. Boston, R.D. Cone, F.J. Smith, L.A. Campfield, P. Burn, F. Lee, Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997) L. Yaswen, N. Diehl, M.B. Brennan, U. Hochgeschwender, Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5, 1066–1070 (1999) M.M. Ollmann, B.D. Wilson, Y.K. Yang, J.A. Kerns, Y. Chen, I. Ganty, G.S. Barsh, Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997) J. Graham, J.R. Shutter, U. Sarmiento, I. Sarosi, K.L. Stark, Overexpression of Agrt leads to obesity in transgenic mice. Nat. Genet. 17, 273–274 (1997) C. Vaisse, K. Clement, B. Guy-Grand, P. Froguel, A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998) G.S.H. Yeo, I.S. Farooqi, S. Aminian, D.J. Halsall, R.G. Stanhope, S. O’Rahilly, A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998) C. Lubrano-Berthelier, E. Durand, B. Dubern, A. Shapiro, P. Dazin, J. Weill, C. Ferron, P. Froguel, C. Vaisse, Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum. Mol. Genet. 12, 145–153 (2003) G.S. Yeo, E.J. Lank, I.S. Farooqi, J. Keogh, G.B. Challis, S. O’Rahilly, Mutations in the human melanocortin4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum. Mol. Genet. 12, 561–574 (2003) W.A. Nijenhuis, K. Garner, R.J. Van Rozen, R.A. Adan, Poor cell surface expression of human melanocortin-4 receptor mutations associated with obesity. J. Biol. Chem. 278, 22939–22945 (2003) Y.X. Tao, D.L. Segaloff, Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology 144, 4544–4551 (2003) A. Hinney, A. Schmidt, K. Nottebom, O. Heibult, I. Becker, A. Ziegler, G. Gerber, M. Sina, T. Gorg, H. Mayer, W. Siegfried, M. Fichter, H. Remshmidt, J. Hebebrand, Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab. 84, 1483–1486 (1999) M.F. Rolland-Cachera, T.J. Cole, M. Sempé, J. Tichet, C. Rossignol, A. Charraud, Variation of the Wt/Hr2 index from birth to 87 y. Eur. J. Clin. Nutr. 45, 13–21 (1991) K. Kromeyer-Hauschild, M. Wabitsch, F. Geller, A. Ziegler, H.C. Geiss, V. Hesse, A. von Hippel, U. Jaeger, D. Johnsen, W. Kiess, W. Korte, D. Kunze, K. Menner, M. Müller, A. Niemann-Pilatus, T. Remer, F. Schaefer, H.U. Wittchen, S. Zabransky, K. Zellner, J. Hebebrand, Percentiles of body mass index in children and adolescents evaluated from different regional German studies. Monatsschr Kinderheilkd 149, 807–818 (2001) T.J. Cole, The LMS method for constructing normalized growth standards. Eur. J. Clin. Nutr. 44, 45–60 (1990) L.M. Kunkel, K.D. Smith, S.H. Boyer, D.S. Borgaonkar, S.S. Wachtel, O.J. Miller, W.R. Breg, H.W. Jones Jr, J.M. Rary, Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc. Natl. Acad. Sci. U.S.A. 74, 1245–1249 (1977) O. Hiort, Q. Huang, G.H.G. Sinnecker, A. Sadeghi-Nejad, K. Kruse, H.J. Wolfe, D.W. Yandell, Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: application for diagnosis genetic counseling and therapy. J. Clin. Endocrinol. Metab. 77, 262–266 (1993) The German Collaborative Intersex Study Group, O. Hiort, A. Wodtke, D. Struve, A. Zöllner, G.H.G. Sinnecker, Detection of point mutations in the androgen receptor gene using non isotopic single strand conformation polymorphism analysis. Hum. Mol. Genet. 3, 1163–1166 (1994) Y.X. Tao, D.L. Segaloff, Functional characterization of melanocortin-3 receptor variants identify a loss-of-function mutation involving an amino acid critical for G protein-coupled receptor activation. J. Clin. Endocrinol. Metab. 89, 3936–3942 (2004) C. Chen, H. Okayama, High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987) S.X. Wang, Z.C. Fan, Y.X. Tao, Functions of acidic transmembrane residues in human melanocortin-3 receptor binding and activation. Biochem. Pharmacol. 76, 520–530 (2008) Z. Xiang, S.A. Litherland, N.B. Sorensen, B. Proneth, M.S. Wood, A.M. Shaw, W.J. Millard, C. Haskell-Luevano, Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288 (2006) Y.X. Tao, Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol. Cell. Endocrinol. 239, 1–14 (2005) Y.X. Tao, D.L. Segaloff, Functional analyses of melanocortin-4 receptor mutations identified from patients with binge eating disorder and nonobese or obese subjects. J. Clin. Endocrinol. Metab. 90, 5632–5638 (2005) T.P. Meehan, K. Tabeta, X. Du, L.S. Woodward, K. Firozi, B. Beutler, M.J. Justice, Point mutations in the melanocortin-4 receptor cause variable obesity in mice. Mamm. Genome 17, 1162–1171 (2006) A. Hinney, S. Hohmann, F. Geller, C. Vogel, C. Hess, A.K. Wermter, B. Brokamp, H. Goldschmidt, W. Siegfried, H. Remschmidt, H. Schafer, T. Gudermann, J. Hebebrand, Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J. Clin. Endocrinol. Metab. 88, 4258–4267 (2003) I.S. Farooqi, J.M. Keogh, G.S.H. Yeo, E.J. Lank, T. Chettham, S. O’Rahilly, Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003) A. Dempfle, A. Hinney, M. Heinzel-Gutenbrunner, M. Raab, F. Geller, T. Gudermann, H. Schafer, J. Hebebrand, Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J. Med. Genet. 10, 795–800 (2004) M.W. Schwartz, S.C. Woods, D. Porte Jr., R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000) H. Biebermann, H. Krude, A. Elsner, V. Chubanov, T. Gudermann, A. Grüters, Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 52, 2984–2988 (2003) J. Grosse, P. Tarnow, H. Römpler, B. Schneider, R. Sedlmeier, U. Huffstadt, D. Korthaus, M. Nehls, S. Wattler, T. Schöneberg, H. Biebermann, M. Augustin, N-ethyl-N-nitrosourea-based generation of mouse models for mutant G protein-coupled receptors. Physiol. Genomics 26, 209–217 (2006) G. Ho, R.G. MacKenzie, Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J. Biol. Chem. 274, 35816–35822 (1999) F. Stutzmann, K. Tan, V. Vatin, C. Dina, B. Jouret, J. Tichet, B. Balkau, N. Potoczna, F. Horber, S. O’Rahilly, I.S. Farooqi, P. Froguel, D. Meyre, Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 57, 2511–2518 (2008) L.S. Barak, M. Tiberi, N.J. Freedman, M.M. Kwatra, R.J. Lefkowitz, M.G. Caron, A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated β2-adrenergic receptor sequestration. J. Biol. Chem. 269, 2790–2795 (1994) L. Hunyady, M. Bor, A.J. Baukal, T. Balla, K.J. Catt, A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J. Biol. Chem. 270, 16602–16609 (1995) S.A. Laporte, G. Servant, D.E. Richard, E. Escher, G. Guillemette, R. Leduc, The tyrosine within the NPXnY motif of the human angiotensin II type 1 receptor is involved in mediating signal transduction but is not essential for internalization. Mol. Pharmacol. 49, 89–95 (1996) J. Wang, J. Zheng, J.L. Anderson, M.L. Toews, A mutation in the hamster α1B-adrenergic receptor that differentiates two steps in the pathway of receptor internalization. Mol. Pharmacol. 52, 306–313 (1997) K.K. Arora, Z. Cheng, K.J. Catt, Dependence of agonist activation on an aromatic moiety in the DPLIY motif of the gonadotropin-releasing hormone receptor. Mol. Endocrinol. 10, 979–986 (1996) I. Kalatskaya, S. Schussler, A. Blaukat, W. Muller-Esterl, M. Jochum, D. Proud et al., Mutation of tyrosine in the conserved NPXXY sequence leads to constitutive phosphorylation and internalization, but not signaling, of the human B2 bradykinin receptor. J. Biol. Chem. 279, 31268–31276 (2004) C. Prioleau, I. Visiers, B.J. Ebersole, H. Weinstein, S.C. Sealfon, Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. Identification of a novel “locked-on” phenotype and double revertant mutations. J. Biol. Chem. 277, 36577–36584 (2002) W. Feng, Z.H. Song, Functional roles of the tyrosine within the NP(X)(n)Y motif and the cysteines in the C-terminal juxtamembrane region of the CB2 cannabinoid receptor. FEBS Lett. 501, 166–170 (2001) N. Hukovic, R. Panetta, U. Kumar, M. Rocheville, Y.C. Patel, The cytoplasmic tail of the human somatostatin receptor type 5 is crucial for interaction with adenylyl cyclase and in mediating desensitization and internalization. J. Biol. Chem. 273, 21416–21422 (1998) L.W. Slice, H.C. Wong, C. Sternini, E.F. Grady, N.W. Bunnett, J.H. Walsh, The conserved NPXnY motif present in the gastrin-releasing peptide receptor is not a general sequestration sequence. J. Biol. Chem. 269, 21755–21761 (1994) Y.X. Tao, The functions of DPLIY motif and helix 8 in human melanocortin-4 receptor. Program & Abstracts of the Endocrine Society’s 88th Annual Meeting,2006, p. 243 (Abstract P1-327) Y.X. Tao, Inactivating mutations of G protein-coupled receptors and diseases: structure-function insights and therapeutic implications. Pharmacol. Ther. 111, 949–973 (2006) P. Tarnow, A. Rediger, H. Brumm, P. Ambrugger, E. Rettenbacher, K. Widhalm, A. Hinney, G. Kleinau, M. Schaefer, J. Hebebrand, G. Krause, A. Grüters, H. Biebermann, A heterozygous mutation in the third transmembrane domain causes a dominant-negative effect on signaling capability of the MC4R. Obes. Facts 1, 155–162 (2008) T. Reinehr, A. Hinney, G. de Sousa, F. Austrup, J. Hebebrand, W. Andler, Definable somatic disorders in overweight children and adolescents. J. Pediatr. 150, 618–622 (2007)