Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum

Trends in Parasitology - Tập 23 - Trang 332-339 - 2007
Cecilia P. Sanchez1, Wilfred D. Stein2, Michael Lanzer1
1Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
2Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Tài liệu tham khảo

Ashley, 2005, Artemisinin-based combinations, Curr. Opin. Infect. Dis., 18, 531, 10.1097/01.qco.0000186848.46417.6c Lakshmanan, 2005, A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance, EMBO J., 24, 2294, 10.1038/sj.emboj.7600681 Egan, 2002, Fate of haem iron in the malaria parasite Plasmodium falciparum, Biochem. J., 365, 343, 10.1042/bj20020793 Fitch, 2004, Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs, Life Sci., 74, 1957, 10.1016/j.lfs.2003.10.003 De Dios, 2003, NMR studies of chloroquine-ferriprotoporphyrin IX complex, J. Phys. Chem. A, 107, 5821, 10.1021/jp0342982 Leed, 2002, Solution structures of antimalarial drug-heme complexes, Biochemistry, 41, 10245, 10.1021/bi020195i Bray, 1998, Access to hematin: the basis of chloroquine resistance, Mol. Pharmacol., 54, 170, 10.1124/mol.54.1.170 Sanchez, 2003, Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in Plasmodium falciparum, Biochemistry, 42, 9383, 10.1021/bi034269h Krogstad, 1992, Energy dependence of chloroquine accumulation and chloroquine efflux in Plasmodium falciparum, Biochem. Pharmacol., 43, 57, 10.1016/0006-2952(92)90661-2 Bray, 2006, PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX, Mol. Microbiol., 62, 238, 10.1111/j.1365-2958.2006.05368.x Saliba, 1998, Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum, J. Biol. Chem., 273, 10190, 10.1074/jbc.273.17.10190 Yayon, 1984, Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine, EMBO J., 3, 2695, 10.1002/j.1460-2075.1984.tb02195.x Bray, 1999, Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum, J. Cell Biol., 145, 363, 10.1083/jcb.145.2.363 Sullivan, 1996, On the molecular mechanism of chloroquine's antimalarial action, Proc. Natl Acad. Sci. U. S. A., 93, 11865, 10.1073/pnas.93.21.11865 Krogstad, 1985, Antimalarials increase vesicle pH in Plasmodium falciparum, J. Cell Biol., 101, 2302, 10.1083/jcb.101.6.2302 Hayward, 2006, The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance, J. Cell Sci., 119, 1016, 10.1242/jcs.02795 Kuhn, 2007, Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin, Cell. Microbiol., 9, 1004, 10.1111/j.1462-5822.2006.00847.x Yayon, 1985, Susceptibility of human malaria parasites to chloroquine is pH dependent, Proc. Natl. Acad. Sci. U. S. A., 82, 2784, 10.1073/pnas.82.9.2784 Geary, 1990, Kinetic modelling of the response of Plasmodium falciparum to chloroquine and its experimental testing in vitro. Implications for mechanism of action of and resistance to the drug, Biochem. Pharmacol., 40, 685, 10.1016/0006-2952(90)90302-2 Bennett, 2004, Drug resistance-associated PfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH, Mol. Biochem. Parasitol., 133, 99, 10.1016/j.molbiopara.2003.09.008 Dzekunov, 2000, Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine, Mol. Biochem. Parasitol., 110, 107, 10.1016/S0166-6851(00)00261-9 Bray, 2002, Distribution of acridine orange fluorescence in Plasmodium falciparum-infected erythrocytes and its implications for the evaluation of digestive vacuole pH, Mol. Biochem. Parasitol., 119, 301, 10.1016/S0166-6851(01)00403-0 Wissing, 2002, Illumination of the malaria parasite Plasmodium falciparum alters intracellular pH. Implications for live cell imaging, J. Biol. Chem., 277, 37747, 10.1074/jbc.M204845200 Krogstad, 1987, Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance, Science, 238, 1283, 10.1126/science.3317830 Zhang, 2004, The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine, Biochemistry, 43, 8290, 10.1021/bi049137i Warhurst, 2002, Lysosomes and drug resistance in malaria, Lancet, 360, 1527, 10.1016/S0140-6736(02)11577-7 Sanchez, 2005, Evidence for a pfcrt-associated chloroquine efflux system in the human malarial parasite Plasmodium falciparum, Biochemistry, 44, 9862, 10.1021/bi050061f Sanchez, 2004, Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant Plasmodium falciparum strains, Biochemistry, 43, 16365, 10.1021/bi048241x Naude, 2005, Dictyostelium discoideum expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild-type, Plasmodium falciparum transporter PfCRT, J. Biol. Chem., 280, 25596, 10.1074/jbc.M503227200 Allen, 2004, The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum, J. Biol. Chem., 279, 11264, 10.1074/jbc.M311110200 Sanchez, 2007, Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum, Mol. Microbiol., 64, 407, 10.1111/j.1365-2958.2007.05664.x Stein, 1986 Baker, 1973, The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model, J. Physiol., 231, 143, 10.1113/jphysiol.1973.sp010225 Cooper, 2002, Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum, Mol. Pharmacol., 61, 35, 10.1124/mol.61.1.35 Djimde, 2001, A molecular marker for chloroquine-resistant falciparum malaria, N. Engl. J. Med., 344, 257, 10.1056/NEJM200101253440403 Fidock, 2000, Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance, Mol. Cell, 6, 861, 10.1016/S1097-2765(05)00077-8 Sidhu, 2002, Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations, Science, 298, 210, 10.1126/science.1074045 Johnson, 2004, Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents, Mol. Cell, 15, 867, 10.1016/j.molcel.2004.09.012 Ferdig, 2004, Dissecting the loci of low-level quinine resistance in malaria parasites, Mol. Microbiol., 52, 985, 10.1111/j.1365-2958.2004.04035.x Martin, 2004, The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily, Mol. Biol. Evol., 21, 1938, 10.1093/molbev/msh205 Tran, 2004, The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily, Microbiology, 150, 1, 10.1099/mic.0.26818-0 Tan, 2006, Functional reconstitution of purified chloroquine resistance membrane transporter expressed in yeast, Arch. Biochem. Biophys., 452, 119, 10.1016/j.abb.2006.06.017 Meredith, 2004, Site-directed mutation of arginine 282 to glutamate uncouples the movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1, J. Biol. Chem., 279, 15795, 10.1074/jbc.M313922200 Quick, 1999, Role of conserved Arg40 and Arg117 in the Na+/proline transporter of Escherichia coli, Biochemistry, 38, 13523, 10.1021/bi991256o Widdas, 1954, Facilitated transfer of hexoses across the human erythrocyte membrane, J. Physiol., 125, 163, 10.1113/jphysiol.1954.sp005148