Tensor-based mathematical framework and new centralities for temporal multilayer networks

Information Sciences - Tập 512 - Trang 563-580 - 2020
Dingjie Wang1,2, Wei Yu3, Xiufen Zou4,2
1School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
2Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China
3School of Computer Science, Wuhan University, Wuhan 430072, China
4School of Mathematics and Statistics, Wuhan University, Wuhan-430072, China

Tài liệu tham khảo

Liao, 2017, Ranking in evolving complex networks, Phys. Rep., 689, 1, 10.1016/j.physrep.2017.05.001 Boccaletti, 2014, The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 10.1016/j.physrep.2014.07.001 Holme, 2012, Temporal networks, Phys. Rep., 519, 97, 10.1016/j.physrep.2012.03.001 Yang, 2019, Evolution of cooperation in synergistically evolving dynamic interdependent networks: fundamental advantages of coordinated network evolution, New J. Phys., 21, 073057, 10.1088/1367-2630/ab32c7 Gosak, 2018, Network science of biological systems at different scales: a review, Phys. Life Rev., 24, 118, 10.1016/j.plrev.2017.11.003 Jin, 2014, Characterizing and controlling the inflammatory network during influenza a virus infection, Sci. Rep., 4, 3799, 10.1038/srep03799 Wang, 2016, Crosstalk between pathways enhances the controllability of signalling networks, IET Syst. Biol., 10, 2, 10.1049/iet-syb.2014.0061 Park, 2016, Understanding the network fundamentals of news sources associated with a specific topic, Inf. Sci., 372, 32, 10.1016/j.ins.2016.08.015 Li, 2016, Identifying disease modules and components of viral infections based on multi-layer networks, Sci. China Inf. Sci., 59, 1, 10.1007/s11432-016-5580-2 Tang, 2012 Li, 2015, Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis., Sci. Rep., 5, 9283, 10.1038/srep09283 Buldyrev, 2010, Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025, 10.1038/nature08932 Mucha, 2010, Community structure in time-dependent, multiscale, and multiplex networks, Science, 328, 876, 10.1126/science.1184819 Domenico, 2013, Mathematical formulation of multi-layer networks, Phys. Rev. X, 3, 4192 Lv, 2019, Eigenvector centrality measure based on node similarity for multilayer and temporal networks, IEEE Access, 7, 115725, 10.1109/ACCESS.2019.2936217 De Domenico, 2015, Ranking in interconnected multilayer networks reveals versatile nodes, Nat. Commun., 6 Kim, 2012, Temporal node centrality in complex networks, Phys. Rev. E, 85, 026107, 10.1103/PhysRevE.85.026107 Wang, 2017, Identifying key nodes in multilayer networks based on tensor decomposition, Chaos, 27, 063108, 10.1063/1.4985185 Wang, 2018, A new centrality measure of nodes in multilayer networks under the framework of tensor computation, Appl. Math. Model., 54, 46, 10.1016/j.apm.2017.07.012 Boccaletti, 2006, Complex networks: structure and dynamics, Phys. Rep., 424, 175, 10.1016/j.physrep.2005.10.009 Control, 2010, Temporal link prediction using matrix and tensor factorizations, ACM Trans. Knowl. Discov. Data, 5, 1 Battiston, 2013, Structural measures for multiplex networks., Phys. Rev. E, 89, 032804 Menichetti, 2014, Weighted multiplex networks., Plos One, 9, e97857, 10.1371/journal.pone.0097857 Cardillo, 2013, Emergence of network features from multiplexity, Sci. Rep., 3, 1344, 10.1038/srep01344 Praprotnik, 2015, Spectral centrality measures in temporal networks, Ars Mathematica Contemporanea, 11, 11, 10.26493/1855-3974.810.5de Lü, 2016, Vital nodes identification in complex networks, Phys. Rep., 650, 1, 10.1016/j.physrep.2016.06.007 Wittenbaum, 1999, Mutual enhancement: toward an understanding of the collective preference for shared information., J. Pers. Soc. Psychol., 77, 967, 10.1037/0022-3514.77.5.967 Bonacich, 1987, Power and centrality: a family of measures, Am. J. Soc., 92, 1170, 10.1086/228631 Mørup, 2011, Applications of tensor (multiway array) factorizations and decompositions in data mining, Wiley Interdiscip. Rev., 1, 24 Smyth, 2002, A spectral theoretic proof of perron-frobenius, Math. Proc. R. Ir.Acad., 102A, 29, 10.3318/PRIA.2002.102.1.29 Mathews, 2004, 4 Kolda, 2009, Tensor decompositions and applications, SIAM Rev., 51, 455, 10.1137/07070111X Brin, 1998, The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Syst., 30, 107, 10.1016/S0169-7552(98)00110-X Gleich, 2015, Pagerank beyond the web, SIAM Rev., 57, 321, 10.1137/140976649 Shannon, 2001, A mathematical theory of communication, ACM SIGMOBILE Mob. Comput. Commun.Rev., 5, 3, 10.1145/584091.584093 Xu, 2017, Identifying important nodes by adaptive leaderrank, Physica A, 469, 654, 10.1016/j.physa.2016.11.034 Consortium, 2008, The gene ontology project in 2008, Nucl. Acids Res., 36, D440, 10.1093/nar/gkm883 Consortium, 2015, Gene ontology consortium: going forward, Nucl. Acids Res., 43, D1049, 10.1093/nar/gku1179 Liu, 2017, Pinning control for the disturbance decoupling problem of boolean networks, IEEE Trans. Autom. Control, 62, 6595, 10.1109/TAC.2017.2715181 Yang, 2018, Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks, Complexity, 2018, 6164786, 10.1155/2018/6164786 Hu, 2015, A necessary and sufficient condition for existence of a positive perron vector, SIAM J. Matrix Anal. Appl., 37, 1747, 10.1137/15M1051828 Yang, 2015 Lim, 2005, Singular values and eigenvalues of tensors: a variational approach, 129 Chang, 2009, Multiplicity of singular values for tensors, Commun. Math. Sci., 7, 611, 10.4310/CMS.2009.v7.n3.a5 Ma, 2015, Revealing pathway dynamics in heart diseases by analyzing multiple differential networks, PLoS Comput. Biol., 11, e1004332, 10.1371/journal.pcbi.1004332 Barrett, 2013, Ncbi geo: archive for functional genomics data sets-update, Nucl. Acids Res., 41, D991, 10.1093/nar/gks1193 Karamanlidis, 2013, Mitochondrial complex i deficiency increases protein acetylation and accelerates heart failure, Cell Metab., 18, 239, 10.1016/j.cmet.2013.07.002 Ivan, 2012, Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza h3n2 viruses reveal dysregulation of trem1 signaling, cytokines, and chemokines, Funct. Integr. Genom., 12, 105, 10.1007/s10142-011-0247-y