Hamilton decompositions of regular expanders: Applications

Journal of Combinatorial Theory, Series B - Tập 104 - Trang 1-27 - 2014
Daniela Kühn1, Deryk Osthus1
1School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Tài liệu tham khảo

Alon, 1994, The algorithmic aspects of the regularity lemma, J. Algorithms, 16, 80, 10.1006/jagm.1994.1005 Alon, 2004, Algorithms with large domination ratio, J. Algorithms, 50, 118, 10.1016/j.jalgor.2003.09.003 Alon, 2004, Testing subgraphs in directed graphs, J. Comput. System Sci., 69, 354, 10.1016/j.jcss.2004.04.008 Alon, 2000 Alspach, 2012, Paley graphs have Hamilton decompositions, Discrete Math., 312, 113, 10.1016/j.disc.2011.06.003 Auerbach, 1976, On decompositions of r-partite graphs into edge-disjoint Hamiltonian circuits, Discrete Math., 14, 265, 10.1016/0012-365X(76)90039-X Ben-Shimon, 2011, On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs, SIAM J. Discrete Math., 25, 1176, 10.1137/110821299 Bollobás, 1985 Bollobás, 1985, On matchings and Hamiltonian cycles in random graphs, vol. 118, 23 Bondy, 1995, Basic Graph Theory: Paths and Circuits, vol. 1, 3 Christofides, 2012, Finding Hamilton cycles in robustly expanding digraphs, J. Graph Algorithms Appl., 16, 337, 10.7155/jgaa.00261 Christofides, 2012, Edge-disjoint Hamilton cycles in graphs, J. Combin. Theory Ser. B, 102, 1035, 10.1016/j.jctb.2011.10.005 B. Csaba, D. Kühn, A. Lo, D. Osthus, A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures II: the bipartite case, preprint. B. Csaba, D. Kühn, A. Lo, D. Osthus, A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions, preprint. A. Ferber, M. Krivelevich, B. Sudakov, Counting and packing Hamilton cycles in dense graphs and oriented graphs, preprint. Frieze, 2005, On packing Hamilton cycles in ε-regular graphs, J. Combin. Theory Ser. B, 94, 159, 10.1016/j.jctb.2004.12.003 Frieze, 2008, On two Hamilton cycle problems in random graphs, Israel J. Math., 166, 221, 10.1007/s11856-008-1028-8 Glover, 1997, The travelling salesman problem: New solvable cases and linkages with the development of approximation algorithms, J. Oper. Res. Soc., 48, 502, 10.1057/palgrave.jors.2600392 Gutin, 2001, TSP tour domination and Hamilton cycle decompositions of regular graphs, Oper. Res. Lett., 28, 107, 10.1016/S0167-6377(01)00053-0 S.G. Hartke, R. Martin, T. Seacrest, Relating minimum degree and the existence of a k-factor, research manuscript. S.G. Hartke, T. Seacrest, Random partitions and edge-disjoint Hamilton cycles, preprint. Hetyei, 1975, On Hamiltonian circuits and 1-factors of the regular complete n-partite graphs, Acta Acad. Pedagog, Civitate Press Ser., 19, 5 Jackson, 1979, Edge-disjoint Hamilton cycles in regular graphs of large degree, J. Lond. Math. Soc., 19, 13, 10.1112/jlms/s2-19.1.13 Jackson, 1981, Long paths and cycles in oriented graphs, J. Graph Theory, 5, 145, 10.1002/jgt.3190050204 Janson, 2000 Keevash, 2009, An exact minimum degree condition for Hamilton cycles in oriented graphs, J. Lond. Math. Soc., 79, 144, 10.1112/jlms/jdn065 Kelly, 2008, A Dirac-type result on Hamilton cycles in oriented graphs, Combin. Probab. Comput., 17, 689, 10.1017/S0963548308009218 Kim, 2001, Random matchings which induce Hamilton cycles, and Hamiltonian decompositions of random regular graphs, J. Combin. Theory Ser. B, 81, 20, 10.1006/jctb.2000.1991 Knox, 2012, Approximate Hamilton decompositions of random graphs, Random Structures Algorithms, 40, 133, 10.1002/rsa.20365 Knox, 2013, Edge-disjoint Hamilton cycles in random graphs, Random Structures Algorithms Knox, 2013, Embedding spanning bipartite graphs of small bandwidth, Combin. Probab. Comput., 22, 71, 10.1017/S0963548312000417 Krivelevich, 2012, Optimal packings of Hamilton cycles in sparse random graphs, SIAM J. Discrete Math., 26, 964, 10.1137/110849171 Krivelevich, 2001, Random regular graphs of high degree, Random Structures Algorithms, 18, 346, 10.1002/rsa.1013 Kühn, 2013, Optimal packings of Hamilton cycles in graphs of high minimum degree, Combin. Probab. Comput., 22, 394, 10.1017/S0963548312000569 D. Kühn, A. Lo, D. Osthus, Proof of the 1-factorization and Hamilton decomposition conjectures IV: exceptional systems for the two cliques case, preprint. D. Kühn, A. Lo, D. Osthus, A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures I: the two cliques case, preprint. Kühn, 2009, Embedding large subgraphs into dense graphs, vol. 365, 137 Kühn, 2012, A survey on Hamilton cycles in directed graphs, European J. Combin., 33, 750, 10.1016/j.ejc.2011.09.030 Kühn, 2013, Hamilton decompositions of regular expanders: a proof of Kellyʼs conjecture for large tournaments, Adv. Math., 237, 62, 10.1016/j.aim.2013.01.005 Kühn, 2010, Hamiltonian degree sequences in digraphs, J. Combin. Theory Ser. B, 100, 367, 10.1016/j.jctb.2009.11.004 Kühn, 2010, Hamilton decompositions of regular tournaments, Proc. Lond. Math. Soc., 101, 303, 10.1112/plms/pdp062 Moon, 1968 Nash-Williams, 1970, Hamiltonian lines in graphs whose vertices have sufficiently large valencies, 813 Nash-Williams, 1971, Hamiltonian arcs and circuits, vol. 186, 197 Ng, 1997, Hamilton decompositions of regular complete regular multipartite digraphs, Discrete Math., 177, 179, 10.1016/S0012-365X(97)00017-4 Osthus, 2013, Approximate Hamilton decompositions of regular robustly expanding digraphs, SIAM J. Discrete Math., 27, 1372, 10.1137/120880951 Perkovic, 1997, Edge coloring regular graphs of high degree, Discrete Math., 165/166, 567, 10.1016/S0012-365X(96)00202-6 Szemerédi, 1978, Regular partitions of graphs, vol. 260, 399 Thomassen, 1979, Long cycles in digraphs with constraints on the degrees, vol. 38, 211 Tillson, 1980, A Hamiltonian decomposition of K2m⁎, 2m⩾8, J. Combin. Theory Ser. B, 29, 68, 10.1016/0095-8956(80)90044-1