A non-adapted sparse approximation of PDEs with stochastic inputs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Babuška, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005, 10.1137/050645142
Babuška, 2004, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 800, 10.1137/S0036142902418680
Beck, 2009, A fast iterative shrinkage-threshold algorithm for linear inverse problems, SIAM J. Imaging Sciences, 2, 183, 10.1137/080716542
S. Becker, J. Bobin, E.J. Candes, NESTA: a fast and accurate first-order method for sparse recovery, ArXiv e-prints, 2009. Available from <http://arxiv.org/abs/0904.3367>.
E. van den Berg, M.P. Friedlander, SPGL1: A solver for large-scale sparse reconstruction, June 2007. Available from <http://www.cs.ubc.ca/labs/scl/spgl1>.
M. Bieri, A sparse composite collocation finite element method for elliptic spdes, Technical Report Research Report No. 2009-08, Seminar für Angewandte Mathematik, SAM, Zürich, Switzerland, 2009.
M. Bieri, R. Andreev, C. Schwab, Sparse tensor discretization of elliptic spdes, Technical Report Research Report No. 2009-07, Seminar für Angewandte Mathematik, SAM, Zürich, Switzerland, 2009.
Bieri, 2009, Sparse high order FEM for elliptic sPDEs, Comput. Methods Appl. Mech. Eng., 198, 1149, 10.1016/j.cma.2008.08.019
Bioucas-Dias, 2007, A new TwIST: two-step iterative shrinking/thresholding algorithms for image restoration, IEEE Trans. Image Process., 16, 2992, 10.1109/TIP.2007.909319
G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, Ph.D. Thesis, Université Blaise, Pascal – Clermont –Ferrand II, 2009.
Blatman, 2010, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilist. Eng. Mech., 25, 183, 10.1016/j.probengmech.2009.10.003
Boufounos, 2007, Sparse signal reconstruction from noisy compressive measurements using cross validation, 299
Bredies, 2008, Linear convergence of iterative soft-thresholding, SIAM J. Sci. Comp., 30, 657, 10.1137/060663556
Bruckstein, 2009, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51, 34, 10.1137/060657704
Candes, 2006, Quantitative robust uncertainty principles and optimally sparse decompositions, Found. Comput. Math., 6, 227, 10.1007/s10208-004-0162-x
Candes, 2007, Sparsity and incoherence in compressive sampling, Inverse Probl., 23, 969, 10.1088/0266-5611/23/3/008
Candes, 2006, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52, 489, 10.1109/TIT.2005.862083
Candes, 2006, Near optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inform. Theory, 52, 5406, 10.1109/TIT.2006.885507
Candes, 2008, Enhancing sparsity by reweighted ℓ1 minimization, J. Fourier Anal. Appl., 14, 877, 10.1007/s00041-008-9045-x
Chen, 1998, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20, 33, 10.1137/S1064827596304010
Cohen, 2009, Compressed sensing and best k-term approximation, J. Am. Math. Soc., 22, 211, 10.1090/S0894-0347-08-00610-3
Combettes, 2005, Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul., 4, 1168, 10.1137/050626090
Dai, 2009, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inform. Theor., 55, 2230, 10.1109/TIT.2009.2016006
Daubechies, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57, 1413, 10.1002/cpa.20042
Blumensath, 2009, Iterative hard thresholding for compressed sensing, Appl. Comp. Harm. Anal., 27, 265, 10.1016/j.acha.2009.04.002
Deb, 2001, Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190, 6359, 10.1016/S0045-7825(01)00237-7
D.L. Donoho, I. Drori, V.C. Stodden, Y. Tsaig, Available from <http://www-stat.stanford.edu/∼sparselab/>.
D.L. Donoho, I. Drori, Y. Tsaig, J.L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Technical report, 2006.
Donoho, 2006, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theory, 52, 6, 10.1109/TIT.2005.860430
Doostan, 2007, Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Eng., 196, 3951, 10.1016/j.cma.2006.10.047
Doostan, 2009, A least-squares approximation of partial differential equations with high-dimensional random inputs, J. Comput. Phys., 228, 4332, 10.1016/j.jcp.2009.03.006
A. Doostan, H. Owhadi, A. Lashgari, G. Iaccarino, Non-adapted sparse approximation of PDEs with stochastic inputs, Technical report, 2009. Center for Turbulence Research, Annual Research Brief, Stanford University (available from <http://ctr.stanford.edu/ResBriefs09/10_doostan.pdf>).
T Figueiredo, 2007, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1, 586, 10.1109/JSTSP.2007.910281
Ghanem, 2002
Hale, 2008, Fixed-point continuation for ℓ1-minimization: methodology and convergence, SIAM J. Optim., 19, 1107, 10.1137/070698920
S. Hosder, R.W. Walters, R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-891, Reno (NV), 2006.
M.A. Khajehnejad, W. Xu, A.S. Avestimehr, B. Hassibi, Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization, ArXiv e-prints, 2010. Available from http://arxiv.org/abs/1004.0402>.
Kim, 2007, An interior-point method for large-scale l1-regularized least squares, IEEE J. Sel. Top. Signal Process., 1, 606, 10.1109/JSTSP.2007.910971
Le Maitre, 2004, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys., 197, 502, 10.1016/j.jcp.2003.12.020
Ma, 2009, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 3084, 10.1016/j.jcp.2009.01.006
L. Mathelin, M.Y. Hussaini, A stochastic collocation algorithm for uncertainty analysis, Technical Report NAS 1.26:212153; NASA/CR-2003-212153, NASA Langley Research Center, 2003.
C. McDiarmid, On the method of bounded differences, in: Surveys in Combinatorics, Cambridge University Press, pp. 148–188.
D. Needell, Noisy signal recovery via iterative reweighted l1-minimization, in: Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2009.
Needell, 2008, CoSaMP: iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmonic Anal., 26, 01
D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via Regularized Orthogonal Matching Pursuit, ArXiv e-prints, 2007.
Nobile, 2008, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2411, 10.1137/070680540
Nobile, 2008, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2309, 10.1137/060663660
Nouy, 2007, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 196, 4521, 10.1016/j.cma.2007.05.016
Nouy, 2008, Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms, Comput. Methods Appl. Mech. Eng., 197, 4718, 10.1016/j.cma.2008.06.012
Osborne, 2000, A new approach to variable selection in least squares problems, IMA J. Numer. Anal., 20, 389, 10.1093/imanum/20.3.389
Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal Matching Pursuit: Recursive function approximation with applications to wavelet decomposition, in: Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, 1993, pp. 40–44.
H. Rauhut, R. Ward, Sparse legendre expansions via ℓ1-minimization, ArXiv e-prints, 2010.
Schwab, 2006, Karhunen–Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217, 100, 10.1016/j.jcp.2006.01.048
M.A. Tatang, Direct incorporation of uncertainty in chemical and environmental engineering systems, PhD thesis, Massachusetts Institute of Technology, 1995.
Tibshirani, 1996, Regression shrinkage and selection via the Lasso, J. Roy. Stat. Soc. Ser. B, 58, 267
Todor, 2007, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal., 27, 232, 10.1093/imanum/drl025
J.A. Tropp, S.J. Wright, Computational methods for sparse solution of linear inverse problems, in: Proceedings of the IEEE, in press.
van den Berg, 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., 31, 890, 10.1137/080714488
Wan, 2005, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys., 209, 617, 10.1016/j.jcp.2005.03.023
Wan, 2009, A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus, Proc. National Acad. Sci., 106, 14189, 10.1073/pnas.0902348106
Ward, 2009, Compressed sensing with cross validation, IEEE Trans. Inform. Theory, 55, 5773, 10.1109/TIT.2009.2032712
Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118, 10.1137/040615201
Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619, 10.1137/S1064827501387826
W. Xu, M.A. Khajehnejad, A.S. Avestimehr, B. Hassibi, Breaking through the thresholds: an analysis for iterative reweighted ℓ1 minimization via the Grassmann Angle Framework, ArXiv e-prints, 2009. Available from <http://arxiv.org/abs/0904.0994>.
J. Yang, Y. Zhang, Alternating direction algorithms for ℓ1-problems in compressive sensing, ArXiv e-prints, 2009. Available from <http://arxiv.org/abs/0912.1185>.