Graption: A graph-based P2P traffic classification framework for the internet backbone

Computer Networks - Tập 55 - Trang 1909-1920 - 2011
Marios Iliofotou1, Hyun-chul Kim2, Michalis Faloutsos1, Michael Mitzenmacher, Prashanth Pappu3, George Varghese4
1University of California, Riverside, CA, USA
2Seoul National University, Gwanak-gu, Seoul, Korea
3Conviva, Inc., San Mateo, CA, USA
4University of California—San Diego, San Diego, CA, USA

Tài liệu tham khảo

E.G. Allan, W.H. Turkett, E.W. Fulp, Using network motifs to identify application protocols, in: IEEE GLOBECOM, 2009. G. Barlett, J. Heidemann, C. Papadopoulos, Inherent behaviors of on-line detection of peer-to-peer file sharing, in: IEEE GI, 2007. L. Bernaille, R. Teixeira, K. Salamatian, Early application identification, in: ACM CoNEXT, 2006. D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, Revealing Skype Traffic: when randomness plays with you, in: ACM SIGCOMM, 2007. CAIDA. http://www.caida.org. M.P. Collins, M.K. Reiter, Hit-List worm detection and bot identification in large networks using protocol graphs, in: RAID, 2007. F. Constantinou, P. Mavrommatis, Identifying known and unknown peer-to-peer traffic, in: IEEE NCA, 2006. DatCat, Internet Measurement Data Catalog. http://www.datcat.org. D. Ellis, J. Aiken, K. Attwood, S. Tenarglia, A behavioral approach to worm detection, in: ACM CCS WORM, 2004. J. Erman, M. Arlitt, A. Mahanti, Traffic classification using clustering algorithms, in: ACM SIGCOMM MineNet, 2006. Este, 2009, On the stability of the information carried by traffic flow features at the packet level, ACM SIGCOMM CCR, 39, 13, 10.1145/1568613.1568616 P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, W. Lee, Polymorphic blending attacks, in: USENIX Security Symposium, 2006. A. Gerber, J. Houle, H. Nguyen, M. Roughan, S. Sen, P2P, the Gorilla in the cable, in: National Cable and Telecommunications Association (NCTA), 2003. G. Gu, R. Perdisci, J. Zhang, W. Lee. BotMiner: clustering analysis of network traffic from protocol- and structure-independent botnet detection, in: USENIX Security Symposium, 2008. P. Haffner, S. Sen, O. Spatscheck, D. Wang, ACAS: automated construction of application signatures, in: ACM SIGCOMM MineNet, 2005. M. Iliofotou, M. Faloutsos, M. Mitzenmacher, Exploiting dynamicity in graph-based traffic analysis: techniques and applications, in: ACM CoNEXT, 2009. M. Iliofotou, B. Gallagher, G. Xie, T. Eliassi-Rad, M. Faloutsos, Profiling-by-association: a resilient traffic profiling solution for the internet backbone, in: ACM CoNEXT, 2010. M. Iliofotou, H. Kim, P. Pappu, M. Faloutsos, M. Mitzenmacher, G. Varghese, Graph-based P2P traffic classification at the internet backbone, in: IEEE GI, 2009. M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese, Network monitoring using traffic dispersion graphs (TDGs), in: ACM IMC, 2007. IPOQUE – Bandwidth Management with Deep Packet Inspection, Internet Study: The Impact of P2P File Sharing, Voice over IP, Instant Messaging, One-Click Hosting and Media Streaming on the Internet, 2009. Y. Jin, S. Esam, Z.L. Zhang, Unveiling core network-wide communication patterns through application traffic activity graph decomposition, in: ACM SIGMETRICS, 2009. W. John, S. Tafvelin, Heuristics to classify internet backbone traffic based on connection patterns, in: IEEE ICOIN, 2008. T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, M. Faloutsos, Is P2P dying or just hiding? in: IEEE GLOBECOM, 2004. T. Karagiannis, A. Broido, M. Faloutsos, K. claffy, Transport layer identification of P2P traffic, in: ACM IMC, 2004. T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: multi-level traffic classification in the dark, in: ACM SIGCOMM, 2005. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K. Lee, Internet traffic classification demystified: myths, caveats, and the best practices, in: ACM CoNEXT, 2008. C. Labovitz, S. Lekel-johnson, J. Oberheide, F. Jahanian, Internet inter-domain traffic, in: ACM SIGCOMM, 2010. J. Ma, K. Levchenko, C. Kreibich, S. Savage, G.M. Voelker, Unexpected means of protocol inference, in: ACM IMC, 2006. A. McGregor, M. Hall, P. Lorier, J. Brunskill, Flow clustering using machine learning techniques, in: PAM, 2004. A. Moore, K. Papagiannaki, Toward the accurate identification of network applications, in: PAM, 2005. Newman, 2003, The structure and function of complex networks, SIAM Review, 45, 167, 10.1137/S003614450342480 T.T.T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification using machine learning, IEEE Communications Surveys and Tutorials, 4th ed., March, 2008. S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network identification of p2p traffic using application signatures, in: WWW, 2004. Sen, 2004, Analyzing peer-to-peer traffic across large networks, IEEE/ACM Transaction on Networking, 12, 219, 10.1109/TNET.2004.826277 G. Tan, M. Poletto, J. Guttag, F. Kaashoek, Role classification of hosts within enterprise networks based on connection patterns, in: USENIX Annual Technical Conference, 2003. I. Trestian, S. Ranjan, A. Kuzmanovic, A. Nucci, Unconstrained endpoint profiling (Googling the Internet), in: ACM SIGCOMM, 2008. G. Urvoy-Keller, T. En-Najjary, Challenging statistical classification for operational usage: the ADSL case, in: ACM IMC, 2009. Witten, 2005 Y. Xie, V. Sekar, D. Maltz, M. Reiter, H. Zhan, Forensic analysis of epidemic attacks in federated networks, in: IEEE ICNP, 2006. K. Xu, Z. Zhang, S. Bhattacharyya, Profiling internet backbone traffic: behavior models and applications, in: ACM SIGCOMM, 2005.