Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales

Earth and Planetary Science Letters - Tập 369 - Trang 284-293 - 2013
C.A. Partin1, A. Bekker1, N.J. Planavsky2, C.T. Scott3, B.C. Gill4, C. Li5, V. Podkovyrov6, A. Maslov7, K.O. Konhauser8, S.V. Lalonde9, G.D. Love10, S.W. Poulton11, T.W. Lyons10
1Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
2Division of Earth and Planetary Sciences, Caltech, Pasadena, CA 91106, USA
3Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada H3A 2A7
4Department of Geosciences, Virginia Polytechnic Institute, Blacksburg, VA 24061, USA
5State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
6Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia
7Zavaritskii Institute of Geology and Geochemistry, Urals Branch, Russian Academy of Sciences, Ekaterinburg, Russia
8Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E3
9European Institute for Marine Studies, 10 UMR 6538 Domaines Océaniques, Technopôle Brest-Iroise, 29280 Plouzané, France
10Department of Earth Sciences University of California Riverside, CA 92521 USA
11School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Tài liệu tham khảo

Algeo, 2004, Can marine anoxic events draw down the trace element inventory of seawater?, Geology, 32, 1057, 10.1130/G20896.1 Algeo, 2006, Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, 10.1029/2004PA001112 Algeo, 2008, Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments, Geosphere, 4, 872, 10.1130/GES00174.1 Anbar, 2007, A whiff of oxygen before the Great Oxidation Event?, Science, 317, 1903, 10.1126/science.1140325 Anderson, 1989, Concentration, oxidation state, and particulate flux of uranium in the Black Sea, Geochim. Cosmochim. Acta, 53, 2215, 10.1016/0016-7037(89)90345-1 Barley, 2005, Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen, Earth Planet. Sci. Lett., 238, 156, 10.1016/j.epsl.2005.06.062 Barnes, 1990, Uranium removal in oceanic sediments and the oceanic U balance, Earth Planet. Sci. Lett., 97, 94, 10.1016/0012-821X(90)90101-3 Barnes, 1993, Uranium geochemistry in estuarine sediments: controls on removal and release processes, Geochim. Cosmochim. Acta, 57, 555, 10.1016/0016-7037(93)90367-6 Bartley, 2004, Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycle, Geology, 32, 129, 10.1130/G19939.1 Behrends, 2005, Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions, Chem. Geol., 220, 315, 10.1016/j.chemgeo.2005.04.007 Bekker, 2012, Oxygen overshoot and recovery during the early Paleoproterozoic, Earth Planet. Sci. Lett., 317–318, 295, 10.1016/j.epsl.2011.12.012 Bekker, 2004, Dating the rise of atmospheric oxygen, Nature, 427, 117, 10.1038/nature02260 Bergman, 2004, COPSE: a new model of biogeochemical cycling over Phanerozoic time, Am. J. Sci., 304, 397, 10.2475/ajs.304.5.397 Berner, 2009, Phanerozoic atmospheric oxygen: new results using the Geocarbsulf Model, Am. J. Sci., 309, 603, 10.2475/07.2009.03 Butterfield, 2007, Macroevolution and macroecology through deep time, Palaeontology, 50, 41, 10.1111/j.1475-4983.2006.00613.x Campbell, 2008, Formation of supercontinents linked to increases in atmospheric oxygen, Nat. Geosci., 1, 554, 10.1038/ngeo259 Campbell, 2010, The mountains that triggered the Late Neoproterozoic increase in oxygen: the Second Great Oxidation Event, Geochim. Cosmochim. Acta, 74, 4187, 10.1016/j.gca.2010.04.064 Canfield, 1998, A new model for Proterozoic ocean chemistry, Nature, 396, 450, 10.1038/24839 Canfield, 2005, The early history of atmospheric oxygen: homage to Robert A. Garrels, Annu. Rev. Earth Planet. Sci., 33, 1, 10.1146/annurev.earth.33.092203.122711 Canfield, 2008, Ferruginous conditions dominated later Neoproterozoic deep-water chemistry, Science, 321, 949, 10.1126/science.1154499 Canfield, 2007, Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life, Science, 315, 92, 10.1126/science.1135013 Canfield, 1999, The evolution of the sulfur cycle, Am. J. Sci., 299, 697, 10.2475/ajs.299.7-9.697 Catling, 2005, How Earth's atmosphere evolved to an oxic state: a status report, Earth Planet. Sci. Lett., 237, 1, 10.1016/j.epsl.2005.06.013 Cloud, 1976, Beginnings of biospheric evolution and their biogeochemical consequences, Paleobiology, 2, 351, 10.1017/S009483730000498X Condie, 1993, Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 104, 1, 10.1016/0009-2541(93)90140-E Dahl, 2010, Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish, Proc. Natl. Acad. Sci. USA, 107, 17911, 10.1073/pnas.1011287107 Dunk, 2002, A reevaluation of the oceanic uranium budget for the Holocene, Chem. Geol., 190, 45, 10.1016/S0009-2541(02)00110-9 Emerson, 1991, Ocean anoxia and the concentrations of molybdenum and vanadium in seawater, Mar. Chem., 34, 177, 10.1016/0304-4203(91)90002-E German, 2003, Hydrothermal processes, 181 Grandstaff, 1980, Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: implications for oxygen in the Precambrian atmosphere, Precambrian Res., 13, 1, 10.1016/0301-9268(80)90056-X Halverson, 2005, Toward a Neoproterozoic composite carbon-isotope record, Geol. Soc. Am. Bull., 117, 1181, 10.1130/B25630.1 Hastings, 1996, Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments, Paleoceanography, 11, 665, 10.1029/96PA01985 Hazen, 2009, Evolution of uranium and thorium minerals, Am. Mineral., 94, 1293, 10.2138/am.2009.3208 Holland, 1984 Holland, 2002, Volcanic gases, black smokers, and the Great Oxidation Event, Geochim. Cosmochim. Acta, 66, 3811, 10.1016/S0016-7037(02)00950-X Holland, 2006, The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. London, Ser. B, 361, 903, 10.1098/rstb.2006.1838 Hsi, 1985, Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model, Geochim. Cosmochim. Acta, 49, 1931, 10.1016/0016-7037(85)90088-2 Karhu, 1999, Carbon isotopes, 67 Karhu, 1996, Carbon isotopes and the rise of atmospheric oxygen, Geology, 24, 867, 10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2 Klinkhammer, 1991, Uranium in the oceans—where it goes and why, Geochim. Cosmochim. Acta, 55, 1799, 10.1016/0016-7037(91)90024-Y Konhauser, 2011, Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event, Nature, 478, 369, 10.1038/nature10511 Ku, 1977, Uranium in open ocean: concentration and isotopic composition, Deep Sea Res., 24, 1005, 10.1016/0146-6291(77)90571-9 Kump, 2011, Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event, Science, 334, 1694, 10.1126/science.1213999 Langmuir, 1978, Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochim. Cosmochim. Acta, 42, 547, 10.1016/0016-7037(78)90001-7 Love, 2009, Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, 457, 718, 10.1038/nature07673 Lovley, 1992, Reduction of uranium by Desulfovibrio desulfuricans, Appl. Environ. Microbiol., 58, 850, 10.1128/AEM.58.3.850-856.1992 Lovley, 1991, Microbial reduction of uranium, Nature, 350, 413, 10.1038/350413a0 Lyons, 2009, Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study, Annu. Rev. Earth Planet. Sci., 37, 507, 10.1146/annurev.earth.36.031207.124233 Lyons, 2006, A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins, Geochim. Cosmochim. Acta, 70, 5698, 10.1016/j.gca.2006.08.021 Morford, 1999, The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 63, 1735, 10.1016/S0016-7037(99)00126-X Murakami, 2011, Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics, Geochim. Cosmochim. Acta, 75, 3982, 10.1016/j.gca.2011.04.023 Paulmier, 2009, Oxygen minimum zones (OMZs) in the modern ocean, Prog. Oceanogr., 80, 113, 10.1016/j.pocean.2008.08.001 Planavsky, 2010, The evolution of the marine phosphate reservoir, Nature, 467, 1088, 10.1038/nature09485 Planavsky, 2012, Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event, Proc. Natl. Acad. Sci. USA, 109, 18300, 10.1073/pnas.1120387109 Planavsky, 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean, Nature, 477, 448, 10.1038/nature10327 Poulton, 2011, Ferruginous conditions: a dominant feature of the Ocean through Earth's history, Elements, 7, 107, 10.2113/gselements.7.2.107 Poulton, 2004, The transition to a sulphidic ocean 1.84 billion years ago, Nature, 431, 173, 10.1038/nature02912 Poulton, 2010, Spatial variability in oceanic redox structure 1.8 billion years ago, Nat. Geosci., 3, 486, 10.1038/ngeo889 Poulton, 2002, The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition, Am. J. Sci., 302, 774, 10.2475/ajs.302.9.774 Raiswell, 2001, An indicator of water-column anoxia: resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, U.K.), J. Sediment. Res., 71, 286, 10.1306/070300710286 Rasmussen, 1999, Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750Ma sandstones from the Pilbara Craton, Australia, Geology, 27, 115, 10.1130/0091-7613(1999)027<0115:RSOTAA>2.3.CO;2 Roscoe, 1993, Pyritic paleoplacer gold and uranium deposits Rye, 1998, Paleosols and the evolution of atmospheric oxygen: a critical review, Am. J. Sci., 298, 621, 10.2475/ajs.298.8.621 Sahoo, 2012, Ocean oxygenation in the wake of the Marinoan glaciation, Nature, 489, 546, 10.1038/nature11445 Schröder, 2008, Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1Gyr shallow-marine Lucknow Formation, South Africa, Terra Nova, 20, 108, 10.1111/j.1365-3121.2008.00795.x Scott, 2008, Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, 452, 456, 10.1038/nature06811 Shen, 2002, Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia, Am. J. Sci., 302, 81, 10.2475/ajs.302.2.81 Shen, 2003, Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin, Nature, 423, 632, 10.1038/nature01651 Slack, 2007, Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA, Earth Planet. Sci. Lett., 255, 243, 10.1016/j.epsl.2006.12.018 Sperling, 2007, Poriferan paraphyly and its implications for Precambrian palaeobiology, Geol. Soc. Lond. Spec. Publ., 286, 355, 10.1144/SP286.25 Taylor, 1985 Tribovillard, 2006, Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12, 10.1016/j.chemgeo.2006.02.012 Tziperman, 2011, Biologically induced initiation of Neoproterozoic snowball-Earth events, Proc. Natl. Acad. Sci. USA, 108, 15091, 10.1073/pnas.1016361108 Van der Weijden, 1990, Profiles of the redox-sensitive trace elements As, Sb, V, Mo and U in the Tyro and Bannock Basins (eastern Mediterranean), Mar. Chem., 31, 171, 10.1016/0304-4203(90)90037-D Wignall, 1988, Interpreting benthic oxygen levels in mudrocks: a new approach, Geology, 16, 452, 10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2 Wilde, 1987, Model of progressive ventilation of the late Precambrian–early Paleozoic ocean, Am. J. Sci., 287, 442, 10.2475/ajs.287.5.442 Zheng, 2002, Remobilization of authigenic uranium in marine sediments by bioturbation, Geochim. Cosmochim. Acta, 66, 1759, 10.1016/S0016-7037(01)00886-9