Callose synthase family genes plays an important role in the Citrus defense response to Candidatus Liberibacter asiaticus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albrecht, U., & Bowman, K. D. (2008). Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Science, 175(3), 291–306. https://doi.org/10.1016/j.plantsci.2008.05.001 .
Amaral, L., Gaspar, M., Costa, P., Aidar, M., & Buckeridge, M. (2007). Novo método enzimático rápido e sensível de extração e dosagem de amido em materiais vegetais. Hoehnea, 34(4), 425–431. https://doi.org/10.1590/S2236-89062007000400001 .
Aritua, V., Achor, D., Gmitter, F. G., Albrigo, G., & Wang, N. (2013). Transcriptional and microscopic analyses of Citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One, 8(9), 4–8. https://doi.org/10.1371/journal.pone.0073742 .
Barratt, D. H. P., Kölling, K., Graf, A., Pike, M., Calder, G., Findlay, K., et al. (2011). Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiology, 155(1), 328–341. https://doi.org/10.1104/pp.110.166330 .
Boava, L. P., Sagawa, C. H. D., Cristofani-Yaly, M., & Machado, M. A. (2015). Incidence of ‘Candidatus Liberibacter asiaticus’-infected plants among citrandarins as rootstock and scion under field conditions. Phytopathology, 105(4), 518–524. https://doi.org/10.1094/PHYTO-08-14-0211-R .
Boava, L. P., Cristofani-Yaly, M., & Machado, M. (2017). Physiologic, anatomic, and gene expression changes in Citrus sunki, Poncirus trifoliata and their hybrids after Liberibacter asiaticus infection. Phytopathology, 107, 590–599. https://doi.org/10.1094/PHYTO-02-16-0077-R .
Bové, J. M. (2006). Huanglongbing : A destructive , newly-emerging, century-old disease of Citrus. Journal of Plant Pathology, 88(1), 7–37. https://doi.org/10.4454/jpp.v88i1.828 .
Chen, X., & Kim, J. (2009). Callose synthesis in higher plants. Plant Signling & Behavior, 2324(August), 489–492. https://doi.org/10.4161/psb.4.6.8359 .
Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Jr, P., & Machado, M. A. (2004). First report of the causal agent of Huanglongbing (“ Candidatus Liberibacter asiaticus”) in Brazil. Plant Disease, 88(12), 2004–2005. https://doi.org/10.1094/PDIS.2004.88.12.1382C .
Cui, W., & Lee, J. Y. (2016). Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants, 2(5), 1–9. https://doi.org/10.1038/NPLANTS.2016.34 .
Dong, X., Hong, Z., Chatterjee, J., Kim, S., & Verma, D. P. S. (2008). Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229(1), 87–98. https://doi.org/10.1007/s00425-008-0812-3 .
Douglas, C. M., Foor, F., Marrinan, J. A., Morin, N., Nielsen, J. B., Dahl, A. M., et al. (1994). The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12907–12911. https://doi.org/10.1073/pnas.91.26.12907
Ellinger, D., & Voigt, C. A. (2014). Callose biosynthesis in arabidopsis with a focus on pathogen response: What we have learned within the last decade. Annals of Botany, 114(6), 1349–1358. https://doi.org/10.1093/aob/mcu120 .
Enns, L. C., Kanaoka, M. M., Torii, K. U., Comai, L., Okada, K., & Cleland, R. E. (2005). Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Molecular Biology, 58(3), 333–349. https://doi.org/10.1007/s11103-005-4526-7 .
Etxeberria, E., Gonzalez, P., Achor, D., & Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology, 74(1), 76–83. https://doi.org/10.1016/j.pmpp.2009.09.004 .
Gómez-Gómez, L., Felix, G., & Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal, 18(3), 277–284. https://doi.org/10.1046/j.1365-313X.1999.00451.x .
Grant, M., & Mansfield, J. (1999). Early events in host-pathogen. Current Opinion in Plant Biology, 2, 312–319.
Hong, Z., Delauney, A. J., & Verma, D. P. (2001). A cell plate-specific callose synthase and its interaction with phragmoplastin. The Plant Cell, 13(4), 755–768. https://doi.org/10.1105/tpc.13.4.755 .
Jacobs, A. K. (2003). An Arabidopsis Callose Synthase, GSL5, is required for wound and papillary callose formation. The Plant Cell Online, 15(11), 2503–2513. https://doi.org/10.1105/tpc.016097 .
Jin, L., & Mackey, D. M. (2017). Measuring callose deposition, an indicator of cell wall reinforcement, during bacterial infection in Arabidopsis. In P. Shan & L. He (Eds.), Plant Pattern Recognition Receptors, 1578, 195–205). Springer science-business. https://doi.org/10.1007/978-1-4939-6859-6 .
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286 .
Kim, J.-S., Sagaram, U. S., Burns, J. K., Li, J.-L., & Wang, N. (2009). Response of sweet orange (Citrus sinensis) to “Candidatus Liberibacter asiaticus” infection: Microscopy and microarray analyses. Phytopathology, 99(1), 50–57. https://doi.org/10.1094/PHYTO-99-1-0050 .
Koh, E. J., Zhou, L., Williams, D. S., Park, J., Ding, N., Duan, Y. P., & Kang, B. H. (2012). Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus.” Protoplasma, 249(3), 687–697. https://doi.org/10.1007/s00709-011-0312-3 .
Kumar, s., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.
Lairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. (2008). Glycosyltransferases: Structures, functions, and mechanisms. Annual Review of Biochemistry, 77(1), 521–55. https://doi.org/10.1146/annurev.biochem.76.061005.092322 .
Li, Y., Baldauf, S., Lim, E.-K., & Bowles, D. J. (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. Journal of Biological Chemistry, 276(6), 4338–4343. https://doi.org/10.1074/jbc.M007447200 .
Liao, H. L., & Burns, J. K. (2012). Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit. Journal of Experimental Botany, 63(8), 3307–3319. https://doi.org/10.1093/jxb/ers070 .
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262 .
Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: A multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24(2), 183–193. https://doi.org/10.1094/MPMI-07-10-0149 .
Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., Rodrigues, C. M., & Machado, M. A. (2012). Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One, 7(2), e31263. https://doi.org/10.1371/journal.pone.0031263 .
Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4326. https://doi.org/10.1093/nar/8.19.4321 .
Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49–57. https://doi.org/10.3103/S0095452715010090 .
Nishimura, M. T. (2008). Loss of a callose synthase results in salicylic acid – Dependent. Science, 969(2003), 969–972. https://doi.org/10.1126/science.1086716 .
Raffaele, S., Win, J., Cano, L. M., & Kamoun, S. (2010). Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics, 11, 637. https://doi.org/10.1186/1471-2164-11-637 .
Richmond, T. a., & Somerville, C. R. (2000). The cellulose synthase superfamily. Plant Physiology, 124(2), 495–498. https://doi.org/10.1104/pp.124.2.495 .
Scacheri, C. A., & Scacheri, P. C. (2015). Mutations in the noncoding genome. Current Opinion in Pediatrics, 27(6), 659–664. https://doi.org/10.1097/MOP.0000000000000283 .
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Molecular Systems Biology, 7(539), 539. https://doi.org/10.1038/msb.2011.75 .
Sinzelle, L., Izsvák, Z., & Ivics, Z. (2009). Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cellular and Molecular Life Sciences, 66(6), 1073–1093. https://doi.org/10.1007/s00018-009-8376-3 .
Stone, B. A., & Clarke, A. (1992). Chemistry and Biology of (1–3)-β-D-Glucans. Victoria: La Trobe University Press.
van Geest, M., & Lolkema, J. S. (2000). Membrane topology and insertion of membrane proteins: Search for Topogenic signals. Microbiology and Molecular Biology Reviews, 64(1), 13–33. https://doi.org/10.1128/MMBR.64.1.13-33.2000 .
Verma, D., & Hong, Z. (2011). Plant callose synthase complexes. Plant Molecular Biology, 47, 693–701 10.1023/A.
Wang, N., & Trivedi, P. (2013). Citrus Huanglongbing : A newly relevant disease presents unprecedented challenges. Phytopathology, 103(7), 652–665. https://doi.org/10.1094/PHYTO-12-12-0331-RVW .
Wang, N., Pierson, E. A., Setubal, C., Xu, J., Levy, J. G., Zhang, Y., et al. (2017). Liberibacter – Host Interface : Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology, 55(June), 1–32. https://doi.org/10.1146/annurev-phyto-080516-035513 .
Xie, B., & Hong, Z. (2011). Unplugging the callose plug from sieve pores. Plant Signaling & Behavior, 6(4), 491–493. https://doi.org/10.4161/psb.6.4.14653 .
Xie, B., Wang, X., Zhu, M., Zhang, Z., & Hong, Z. (2011). CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant Journal, 65(1), 1–14. https://doi.org/10.1111/j.1365-313X.2010.04399.x .
Yu, Y., Jiao, L., Fu, S., Yin, L., Zhang, Y., & Lu, J. (2015). Callose synthase family genes involved in the grapevine defense response to downy mildew disease. Phytopatology, 106(1), 56–64.
Zou, H., Gowda, S., Zhou, L., Hajeri, S., Chen, G., & Duan, Y. (2012). The destructive Citrus pathogen, “Candidatus Liberibacter asiaticus” encodes a functional Flagellin characteristic of a pathogen-associated molecular pattern. PLoS One, 7(9), e46447. https://doi.org/10.1371/journal.pone.0046447 .