The molecular origins of chiral growth in walled cells
Tài liệu tham khảo
Boal, 2012
Holtje, 1998, Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli, Microbiol Mol Biol Rev, 62, 181, 10.1128/MMBR.62.1.181-203.1998
Scheffers, 2005, Bacterial cell wall synthesis: new insights from localization studies, Microbiol Mol Biol Rev, 69, 585, 10.1128/MMBR.69.4.585-607.2005
Huang, 2008, Cell shape and cell-wall organization in Gram-negative bacteria, Proc Natl Acad Sci U S A, 105, 19282, 10.1073/pnas.0805309105
Furchtgott, 2011, Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria, Mol Microbiol, 81, 340, 10.1111/j.1365-2958.2011.07616.x
Barrett, 2007, Analysis of glycan polymers produced by peptidoglycan glycosyltransferases, J Biol Chem, 282, 31964, 10.1074/jbc.M705440200
Perlstein, 2010, The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases, J Am Chem Soc, 132, 48, 10.1021/ja909325m
Wang, 2008, Isolated peptidoglycan glycosyltransferases from different organisms produce different glycan chain lengths, J Am Chem Soc, 130, 14068, 10.1021/ja806016y
Yuan, 2007, Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis, Proc Natl Acad Sci U S A, 104, 5348, 10.1073/pnas.0701160104
Sliusarenko, 2010, Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology, Proc Natl Acad Sci U S A, 107, 10086, 10.1073/pnas.1000737107
Cooper, 1997, The relationship of bacterial shape to motility: a conjecture on shape determination in motile, rod-shaped bacteria, FEMS Microbiol Lett, 148, 227, 10.1111/j.1574-6968.1997.tb10293.x
Dusenbery, 1998, Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria, J Bacteriol, 180, 5978, 10.1128/JB.180.22.5978-5983.1998
Cho, 2007, Self-organization in high-density bacterial colonies: efficient crowd control, PLoS Biol, 5, e302, 10.1371/journal.pbio.0050302
Tropini, 2012, Physical constraints on the establishment of intracellular spatial gradients in bacteria, BMC Biophys, 5, 17, 10.1186/2046-1682-5-17
Chen, 2011, Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium, Proc Natl Acad Sci U S A, 108, 1052, 10.1073/pnas.1015397108
Huang, 2010, Macromolecules that prefer their membranes curvy, Mol Microbiol, 76, 822, 10.1111/j.1365-2958.2010.07168.x
Ramamurthi, 2009, Geometric cue for protein localization in a bacterium, Science, 323, 1354, 10.1126/science.1169218
Ramamurthi, 2009, Negative membrane curvature as a cue for subcellular localization of a bacterial protein, Proc Natl Acad Sci U S A, 106, 13541, 10.1073/pnas.0906851106
Jiang, 2011, Mechanical control of bacterial cell shape, Biophys J, 101, 327, 10.1016/j.bpj.2011.06.005
Jiang, 2010, Morphology, growth, and size limit of bacterial cells, Phys Rev Lett, 105, 028101, 10.1103/PhysRevLett.105.028101
Wang, 2012, Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall, Proc Natl Acad Sci U S A, 109, E595, 10.1073/pnas.1117132109
Andrews, 2007, A mechanical explanation for cytoskeletal rings and helices in bacteria, Biophys J, 93, 1872, 10.1529/biophysj.106.102343
Nizette, 1999, Towards a classification of Euler–Kirchhoff filaments, J Math Psychol, 40, 2830
Crane, 1950, Principles and problems of biological growth, Sci Monthly, 70, 376
Ben-Yehuda, 2002, Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ, Cell, 109, 257, 10.1016/S0092-8674(02)00698-0
Fu, 2010, In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM), PLoS One, 5, e12682, 10.1371/journal.pone.0012680
Osawa, 2009, Curved FtsZ protofilaments generate bending forces on liposome membranes, EMBO J, 28, 3476, 10.1038/emboj.2009.277
Sun, 1998, FtsZ dynamics during the division cycle of live Escherichia coli cells, J Bacteriol, 180, 2050, 10.1128/JB.180.8.2050-2056.1998
Thanedar, 2004, FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli, Curr Biol, 14, 1167, 10.1016/j.cub.2004.06.048
Vats, 2007, Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle, Proc Natl Acad Sci U S A, 104, 17795, 10.1073/pnas.0708739104
Vats, 2009, Assembly of the MreB-associated cytoskeletal ring of Escherichia coli, Mol Microbiol, 72, 170, 10.1111/j.1365-2958.2009.06632.x
Cabeen, 2009, Bacterial cell curvature through mechanical control of cell growth, EMBO J, 28, 1208, 10.1038/emboj.2009.61
Salje, 2011, Direct membrane binding by bacterial actin MreB, Mol Cell, 43, 478, 10.1016/j.molcel.2011.07.008
Bendezu, 2009, RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli, EMBO J, 28, 193, 10.1038/emboj.2008.264
Shiomi, 2008, Determination of bacterial rod shape by a novel cytoskeletal membrane protein, EMBO J, 27, 3081, 10.1038/emboj.2008.234
Defeu Soufo, 2004, Dynamic movement of actin-like proteins within bacterial cells, EMBO Rep, 5, 789, 10.1038/sj.embor.7400209
Wang, 2010, Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria, Proc Natl Acad Sci U S A, 107, 9182, 10.1073/pnas.0911517107
Paradez, 2006, Microtubule cortical array organization and plant cell morphogenesis, Curr Opin Plant Biol, 9, 571, 10.1016/j.pbi.2006.09.005
Bean, 2008, Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions, Biochemistry, 47, 826, 10.1021/bi701538e
Bean, 2009, A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB, Biochemistry, 48, 4852, 10.1021/bi900014d
Kruse, 2005, The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex, Mol Microbiol, 55, 78, 10.1111/j.1365-2958.2004.04367.x
Dominguez-Escobar, 2011, Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria, Science, 333, 225, 10.1126/science.1203466
Garner, 2011, Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis, Science, 333, 222, 10.1126/science.1203285
Swulius, 2011, Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria, Biochem Biophys Res Commun, 407, 650, 10.1016/j.bbrc.2011.03.062
Swulius, 2012, The helical MreB cytoskeleton in E. coli MC1000/pLE7 is an artifact of the N-terminal YFP tag, J Bacteriol, 194, 6382, 10.1128/JB.00505-12
Grotjohann, 2011, Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature, 478, 204, 10.1038/nature10497
Daly, 2011, Mechanics of membrane bulging during cell-wall disruption in gram-negative bacteria, Phys Rev E: Stat Nonlin Soft Matter Phys, 83, 041922, 10.1103/PhysRevE.83.041922
Teeffelen Sv, 2011, The bacterial actin MreB rotates and rotation depends on cell-wall assembly, Proc Natl Acad Sci U S A, 108, 15822, 10.1073/pnas.1108999108
Daniel, 2003, Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell, Cell, 113, 767, 10.1016/S0092-8674(03)00421-5
DeBolt, 2007, Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement, Proc Natl Acad Sci U S A, 104, 5854, 10.1073/pnas.0700789104
DeBolt, 2007, Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment, Plant Physiol, 145, 334, 10.1104/pp.107.104703
Chan, 2007, Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells, Nat Cell Biol, 9, 171, 10.1038/ncb1533
Shaw, 2003, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science, 300, 1715, 10.1126/science.1083529
Gutierrez, 2009, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nat Cell Biol, 11, 797, 10.1038/ncb1886
Ishida, 2007, Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana, Proc Natl Acad Sci U S A, 104, 8544, 10.1073/pnas.0701224104
Nakajima, 2004, SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells, Plant Cell, 16, 1178, 10.1105/tpc.017830
Thitamadee, 2002, Microtubule basis for left-handed helical growth in Arabidopsis, Nature, 417, 193, 10.1038/417193a
Sedbrook, 2004, The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion, Plant Cell, 16, 1506, 10.1105/tpc.020644
Lloyd, 2002, Helical microtubule arrays and spiral growth, Plant Cell, 14, 2319, 10.1105/tpc.141030
Hallatschek, 2007, Genetic drift at expanding frontiers promotes gene segregation, Proc Natl Acad Sci U S A, 104, 19926, 10.1073/pnas.0710150104
van den Ent, 2001, Prokaryotic origin of the actin cytoskeleton, Nature, 413, 39, 10.1038/35092500