The molecular origins of chiral growth in walled cells

Current Opinion in Microbiology - Tập 15 - Trang 707-714 - 2012
Kerwyn Casey Huang1,2, David W. Ehrhardt3, Joshua W. Shaevitz4
1Department of Bioengineering, Stanford University, Stanford, CA, USA
2Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
3Department of Plant Biology, Carnegie Institution, Stanford, CA, USA
4Department of Physics, Princeton University, Princeton, NJ, USA

Tài liệu tham khảo

Boal, 2012 Holtje, 1998, Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli, Microbiol Mol Biol Rev, 62, 181, 10.1128/MMBR.62.1.181-203.1998 Scheffers, 2005, Bacterial cell wall synthesis: new insights from localization studies, Microbiol Mol Biol Rev, 69, 585, 10.1128/MMBR.69.4.585-607.2005 Huang, 2008, Cell shape and cell-wall organization in Gram-negative bacteria, Proc Natl Acad Sci U S A, 105, 19282, 10.1073/pnas.0805309105 Furchtgott, 2011, Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria, Mol Microbiol, 81, 340, 10.1111/j.1365-2958.2011.07616.x Barrett, 2007, Analysis of glycan polymers produced by peptidoglycan glycosyltransferases, J Biol Chem, 282, 31964, 10.1074/jbc.M705440200 Perlstein, 2010, The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases, J Am Chem Soc, 132, 48, 10.1021/ja909325m Wang, 2008, Isolated peptidoglycan glycosyltransferases from different organisms produce different glycan chain lengths, J Am Chem Soc, 130, 14068, 10.1021/ja806016y Yuan, 2007, Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis, Proc Natl Acad Sci U S A, 104, 5348, 10.1073/pnas.0701160104 Sliusarenko, 2010, Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology, Proc Natl Acad Sci U S A, 107, 10086, 10.1073/pnas.1000737107 Cooper, 1997, The relationship of bacterial shape to motility: a conjecture on shape determination in motile, rod-shaped bacteria, FEMS Microbiol Lett, 148, 227, 10.1111/j.1574-6968.1997.tb10293.x Dusenbery, 1998, Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria, J Bacteriol, 180, 5978, 10.1128/JB.180.22.5978-5983.1998 Cho, 2007, Self-organization in high-density bacterial colonies: efficient crowd control, PLoS Biol, 5, e302, 10.1371/journal.pbio.0050302 Tropini, 2012, Physical constraints on the establishment of intracellular spatial gradients in bacteria, BMC Biophys, 5, 17, 10.1186/2046-1682-5-17 Chen, 2011, Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium, Proc Natl Acad Sci U S A, 108, 1052, 10.1073/pnas.1015397108 Huang, 2010, Macromolecules that prefer their membranes curvy, Mol Microbiol, 76, 822, 10.1111/j.1365-2958.2010.07168.x Ramamurthi, 2009, Geometric cue for protein localization in a bacterium, Science, 323, 1354, 10.1126/science.1169218 Ramamurthi, 2009, Negative membrane curvature as a cue for subcellular localization of a bacterial protein, Proc Natl Acad Sci U S A, 106, 13541, 10.1073/pnas.0906851106 Jiang, 2011, Mechanical control of bacterial cell shape, Biophys J, 101, 327, 10.1016/j.bpj.2011.06.005 Jiang, 2010, Morphology, growth, and size limit of bacterial cells, Phys Rev Lett, 105, 028101, 10.1103/PhysRevLett.105.028101 Wang, 2012, Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall, Proc Natl Acad Sci U S A, 109, E595, 10.1073/pnas.1117132109 Andrews, 2007, A mechanical explanation for cytoskeletal rings and helices in bacteria, Biophys J, 93, 1872, 10.1529/biophysj.106.102343 Nizette, 1999, Towards a classification of Euler–Kirchhoff filaments, J Math Psychol, 40, 2830 Crane, 1950, Principles and problems of biological growth, Sci Monthly, 70, 376 Ben-Yehuda, 2002, Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ, Cell, 109, 257, 10.1016/S0092-8674(02)00698-0 Fu, 2010, In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM), PLoS One, 5, e12682, 10.1371/journal.pone.0012680 Osawa, 2009, Curved FtsZ protofilaments generate bending forces on liposome membranes, EMBO J, 28, 3476, 10.1038/emboj.2009.277 Sun, 1998, FtsZ dynamics during the division cycle of live Escherichia coli cells, J Bacteriol, 180, 2050, 10.1128/JB.180.8.2050-2056.1998 Thanedar, 2004, FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli, Curr Biol, 14, 1167, 10.1016/j.cub.2004.06.048 Vats, 2007, Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle, Proc Natl Acad Sci U S A, 104, 17795, 10.1073/pnas.0708739104 Vats, 2009, Assembly of the MreB-associated cytoskeletal ring of Escherichia coli, Mol Microbiol, 72, 170, 10.1111/j.1365-2958.2009.06632.x Cabeen, 2009, Bacterial cell curvature through mechanical control of cell growth, EMBO J, 28, 1208, 10.1038/emboj.2009.61 Salje, 2011, Direct membrane binding by bacterial actin MreB, Mol Cell, 43, 478, 10.1016/j.molcel.2011.07.008 Bendezu, 2009, RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli, EMBO J, 28, 193, 10.1038/emboj.2008.264 Shiomi, 2008, Determination of bacterial rod shape by a novel cytoskeletal membrane protein, EMBO J, 27, 3081, 10.1038/emboj.2008.234 Defeu Soufo, 2004, Dynamic movement of actin-like proteins within bacterial cells, EMBO Rep, 5, 789, 10.1038/sj.embor.7400209 Wang, 2010, Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria, Proc Natl Acad Sci U S A, 107, 9182, 10.1073/pnas.0911517107 Paradez, 2006, Microtubule cortical array organization and plant cell morphogenesis, Curr Opin Plant Biol, 9, 571, 10.1016/j.pbi.2006.09.005 Bean, 2008, Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions, Biochemistry, 47, 826, 10.1021/bi701538e Bean, 2009, A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB, Biochemistry, 48, 4852, 10.1021/bi900014d Kruse, 2005, The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex, Mol Microbiol, 55, 78, 10.1111/j.1365-2958.2004.04367.x Dominguez-Escobar, 2011, Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria, Science, 333, 225, 10.1126/science.1203466 Garner, 2011, Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis, Science, 333, 222, 10.1126/science.1203285 Swulius, 2011, Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria, Biochem Biophys Res Commun, 407, 650, 10.1016/j.bbrc.2011.03.062 Swulius, 2012, The helical MreB cytoskeleton in E. coli MC1000/pLE7 is an artifact of the N-terminal YFP tag, J Bacteriol, 194, 6382, 10.1128/JB.00505-12 Grotjohann, 2011, Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature, 478, 204, 10.1038/nature10497 Daly, 2011, Mechanics of membrane bulging during cell-wall disruption in gram-negative bacteria, Phys Rev E: Stat Nonlin Soft Matter Phys, 83, 041922, 10.1103/PhysRevE.83.041922 Teeffelen Sv, 2011, The bacterial actin MreB rotates and rotation depends on cell-wall assembly, Proc Natl Acad Sci U S A, 108, 15822, 10.1073/pnas.1108999108 Daniel, 2003, Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell, Cell, 113, 767, 10.1016/S0092-8674(03)00421-5 DeBolt, 2007, Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement, Proc Natl Acad Sci U S A, 104, 5854, 10.1073/pnas.0700789104 DeBolt, 2007, Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment, Plant Physiol, 145, 334, 10.1104/pp.107.104703 Chan, 2007, Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells, Nat Cell Biol, 9, 171, 10.1038/ncb1533 Shaw, 2003, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science, 300, 1715, 10.1126/science.1083529 Gutierrez, 2009, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nat Cell Biol, 11, 797, 10.1038/ncb1886 Ishida, 2007, Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana, Proc Natl Acad Sci U S A, 104, 8544, 10.1073/pnas.0701224104 Nakajima, 2004, SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells, Plant Cell, 16, 1178, 10.1105/tpc.017830 Thitamadee, 2002, Microtubule basis for left-handed helical growth in Arabidopsis, Nature, 417, 193, 10.1038/417193a Sedbrook, 2004, The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion, Plant Cell, 16, 1506, 10.1105/tpc.020644 Lloyd, 2002, Helical microtubule arrays and spiral growth, Plant Cell, 14, 2319, 10.1105/tpc.141030 Hallatschek, 2007, Genetic drift at expanding frontiers promotes gene segregation, Proc Natl Acad Sci U S A, 104, 19926, 10.1073/pnas.0710150104 van den Ent, 2001, Prokaryotic origin of the actin cytoskeleton, Nature, 413, 39, 10.1038/35092500