Calcium binding to sialic acids and its effect on the conformation of ependymins

FEBS Journal - Tập 217 Số 1 - Trang 275-280 - 1993
Bernhard Ganss1, Werner Hoffmann1
1Max-Planck-Institut für Psychiatrie, Abteilung Neurochemie, Martinsried, Germany

Tóm tắt

Soluble ependymins form the predominant protein constituents in the cerebrospinal fluid from many orders of teleost fish. Furthermore, these glycoproteins also exist in a bound form associated with the extracellular matrix. Ependymins are synthesized in meningeal fibroblasts. In goldfish, their synthesis is increased during the regeneration of the optic nerve and they share several characteristics with molecules involved in cell contact phenomena. In this study, we show by a calcium overlay technique that ependymins from goldfish and rainbow trout are able to bind 45Ca2+. However, nearly all of this Ca2+‐binding capacity is lost after digestion with sialidase. Furthermore, circular‐dichroism spectra from FPLC‐purified rainbow trout ependymins have been recorded in the presence and absence of Ca2+. Below 250 nm, the CD spectrum showed a characteristic minimum of ellipticity at 217 nm typical of β structures. This signal is independent of the Ca2+ concentration. In contrast, the complex signal at 250–310 nm mainly decreased with increasing Ca2+ concentration indicating changes in the environment of aromatic side chains.

Từ khóa


Tài liệu tham khảo

10.1016/0014-5793(72)80038-3

10.1016/0014-5793(73)80126-7

10.1016/S0021-9258(18)35844-7

10.1021/bi00713a027

Chou D. K. H., 1986, Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK‐1 antibody and some IgM paraproteins in neuropathy, J. Biol. Chem., 261, 11717, 10.1016/S0021-9258(18)67303-X

10.1016/0006-291X(77)90339-4

Dang C. V., 1985, Localization of a fibrinogen calcium binding site between γ‐subunit positions 311 and 336 by terbium fluorescence, J. Biol. Chem., 260, 9713, 10.1016/S0021-9258(17)39297-9

10.1016/S0021-9258(18)63817-7

10.1021/bi00396a015

10.1083/jcb.109.3.1289

10.1016/0968-0004(86)90176-3

10.1021/bi00838a031

10.1002/j.1460-2075.1990.tb08133.x

10.1016/0968-0004(91)90041-S

10.1016/0003-2697(88)90116-9

10.1016/S0079-6123(08)62310-9

10.1007/978-94-011-2348-8_15

10.1016/S0021-9258(17)40194-3

10.1016/S0008-6215(00)85360-4

10.1111/j.1471-4159.1989.tb10932.x

Königstorfer A., 1989, Biosynthesis of ependymins from goldfish brain, J. Biol. Chem., 264, 13689, 10.1016/S0021-9258(18)80052-7

10.1007/BF00329438

10.1016/0304-4165(84)90118-1

10.3109/10409238009105467

10.1083/jcb.106.1.213

10.1073/pnas.86.16.6047

10.1042/bj1230829

10.1093/oxfordjournals.jbchem.a134633

10.1111/j.1432-1033.1992.tb16773.x

Mendis D. B., 1992, Developmental expression of SPARC, a secreted Ca2+‐binding glycoprotein, in the rodent brain, Mol. Biol. Cell, 3, 315A

10.1016/0378-1119(92)90188-U

Müller‐Schmid A., 1993, Molecular analysis of ependymins from the cerebrospinal fluid of the orders Clupeiformes and Salmoniformes: no indication for the existence of an euteleost infradivision, J. Mol. Evol., 36, 578, 10.1007/BF00556362

Nicholson C., 1980, Modulation of extracellular calcium and its functional implications, Fed. Proc., 39, 1519

10.1016/0092-8674(90)90506-A

10.3109/10409239209082560

10.1007/978-1-349-12275-2_3

10.1089/dna.1992.11.425

10.1083/jcb.109.5.2363

10.1083/jcb.109.1.341

Schmidt R., 1991, Calcium and zinc ion binding properties of goldfish brain ependymin, Neuro. Chem. (Life Sci. Adv.), 10, 161

10.1007/BF00333696

10.1016/B978-0-12-440103-7.50013-4

10.1007/BF00711092

10.1007/BF00973283

10.1111/j.1749-6632.1991.tb25916.x

10.1016/S0006-291X(86)80581-2

Sterling R. K., 1992, Ca2+ binding by gallbladder mucin (GBM) is related to sialic acid (SA) content, Hepatology, 16, 155A

10.1016/0306-4522(90)90214-O

10.3109/10409237409105445

10.1016/0014-4886(92)90135-D

10.1016/0014-4886(92)90184-R

10.1073/pnas.76.9.4350

10.1007/978-3-7091-8680-0_7

10.1042/bj2780199

Yamada K. M., 1982, Immunochemistry of the extracellular matrix, 111

10.1096/fasebj.4.6.2180767