Influence of Electrochemical Processing on the Dispersed Composition of Humic Compounds
Tóm tắt
A preparation of peat humic acids modified by electrochemical treatment in an alkaline medium on iron electrodes was obtained. The effect of the electrochemical treatment on the dispersed composition of the particles of humic substances was determined using dynamic light scattering (quantum correlation spectroscopy). It was found that humic compounds in solution predominantly occur in the form of agglomerates (130–6000 nm), the dispersed composition of which becomes more homogeneous upon electrochemical treatment, and the ability for associative interactions decreases.
Tài liệu tham khảo
Beznosikov, V.A. and Lodygin, E.D., Izv. KNTs UrO RAN, 2010, vol. 1, p. 24.
Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, and Formation), Ermakov, E.I., Ed., St. Petersburg: Izd. S.-Peterb. Univ., 2004.
Amir, S., Jouraiphy, A., Meddich, A., Gharous, M.E., Winterton, P., and Hafidi, M., J. Hazard. Mater., 2010, vol. 177, nos. 1–3, p. 524. https://doi.org/10.1016/j.jhazmat.2009.12.064
Shtin, S.M., Gorn. Inform.-Analit. Byull., 2011, no. 7, p. 82.
Orlov, D.S., Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii (Humic Acids of Soils and the General Theory of Humification), Moscow: Izd. Mosk. Gos. Univ., 1990.
Orlov, D.S., Sadovnikova, L.K., and Sukhanova, N.I., Khimiya pochv (Soil Chemistry), Moscow: Vysshaya Shkola, 2005.
Maslak, Ya.V., Mozharova, I.V., and Smirnova, V.A., Vestn. BGU, 2011, no. 1, p. 69.
Boguta, P., D’Orazio, V., Senesi, N., Sokolowska, Z., and Szewczuk-Karpisz, K., J. Environ. Manage., 2019, vol. 245, p. 367. https://doi.org/10.1016/j.jenvman.2019.05.098
Yang, C., Zeng, Q., Yang, Y., Xiao, R., Wang, Y., and Shi, H., J. Ind. Eng. Chem., 2014, vol. 20, no. 3, p. 1133. https://doi.org/10.1016/j.jiec.2013.07.001
Celebi, O., Kilikli, A., and Erten, H.N., J. Hazard. Mater., 2009, vol. 168, nos. 2–3, p. 695. https://doi.org/10.1016/j.jhazmat.2009.02.090
Yang, T. and Hodson, M.E., Sci. Total Environ., 2019, vol. 647, p. 290. https://doi.org/10.1016/j.scitotenv.2018.07.457
Gavrilov, S.V., Cand. Sci. (Eng.) Dissertation, Kazan, 2017.
Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., and Piccolo, A., Sci. Hortic., 2015, vol. 196, p. 15. https://doi.org/10.1016/j.scienta.2015.09.013
Ivanov A.A., Yudina N.V., Il’ina A.A., and Lomo-vskii, O.I., Vestn. Tomsk. Gos. Pedag. Univ., 2008, no. 4, p. 38.
Yao, B., Liu, Y., and Zou, D., Chemosphere, 2019, vol. 226, p. 298. https://doi.org/10.1016/j.chemosphere.2019.03.098
Silkin, S.V., Kulikov, E.E., and Popov, I.A., Tr. MFTI, 2018, vol. 10, no. 3, p. 86.
Kyzas, G.Z. Bikiaris, D.N., and Lambropoulou, D.A., J. Mol. Liq., 2017, vol. 230, p. 1. https://doi.org/10.1016/j.molliq.2017.01.015
Terashima, M., Tanaka, S., and Fukushima, M., Chemosphere, 2007, vol. 69, no. 2, p. 240. https://doi.org/10.1016/j.chemosphere.2007.04.012
Promtov, M., Stepanov, A., Aleshin, A., and Kolesnikova, M., Chem. Eng. Res. Des., 2016, vol. 108, p. 217. https://doi.org/10.1016/j.cherd.2016.03.013
Jia, W., Zhai, S., Ma, C., Cao, H., and Xing, B., Ecotoxicol. Environ. Saf., 2019, vol. 169, p. 848. https://doi.org/10.1016/j.ecoenv.2018.11.072
Kovacs, P. and Posta, J., Microchem. J., 2005, vol. 79, nos. 1–2, p. 49. https://doi.org/10.1016/j.microc.2004.10.012
Li, C., Berns, A.E., Schaffer, A., Sequaris, J.M., Vereecken, H., Ji, R., and Klumpp, E., Chemosphere, 2011, vol. 84, no. 4, p. 409. https://doi.org/10.1016/j.chemosphere.2011.03.057
Gavrilov, S.V., Kanarskii, A.V., Sidorov, Yu.D., and Polivanov, M.A., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 18, p. 184.
Parfenova, L.N., Trufanova, M.V., Selyanina, S.B., Bogolitsyn, K.G., Orlov, A.S., and Strigutskii, V.P., Fundam. Issled., 2014, no. 12, p. 1411.
Selyanina, S.B., Zubov, I.N., Orlov, A.S., Sokolova, T.V., Yarygina, O.N., and Tatarintseva, V.G., Prirodopol’zovanie, 2018, no. 2, p. 134.
Al-Faiyz, Y.S.S., Arab. J. Chem., 2017, vol. 10, p. 839. https://doi.org/10.1016/j.arabjc.2012.12.018
Kvam, C., Granese, D., Flaibani, A., Pollesello, P., and Paoletti, S., Biochem. Biophys. Res. Commun., 1993, vol. 193, no. 3, p. 927. https://doi.org/10.1006/bbrc.1993.1714
Vatankhah, G., Drogowska, M., Menard, H., and Brossard, L., J. Appl. Electrochem., 1998, vol. 28, no. 2, p. 173. https://doi.org/10.1023/A:1003230725414
Harvey, T.J., Walsh, F.C., and Nahle, A.H., J. Mol. Liq., 2018, vol. 266, p. 160. https://doi.org/10.1016/j.molliq.2018.06.014
Merkushina, G.A., Larin, S.I., and Larina, N.S., Vestn. TGU, 2013, no. 4, p. 187.