Influence of Electrochemical Processing on the Dispersed Composition of Humic Compounds

Allerton Press - Tập 55 - Trang 78-82 - 2021
S. B. Selyanina1, A. S. Orlov1, I. N. Zubov1, A. V. Kanarskii2, S. V. Gavrilov2, Yu. G. Khabarov3
1Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
2Kazan National Research Technological University, Kazan, Russia
3Northern Arctic Federal University, Arkhangelsk, Russia

Tóm tắt

A preparation of peat humic acids modified by electrochemical treatment in an alkaline medium on iron electrodes was obtained. The effect of the electrochemical treatment on the dispersed composition of the particles of humic substances was determined using dynamic light scattering (quantum correlation spectroscopy). It was found that humic compounds in solution predominantly occur in the form of agglomerates (130–6000 nm), the dispersed composition of which becomes more homogeneous upon electrochemical treatment, and the ability for associative interactions decreases.

Tài liệu tham khảo

Beznosikov, V.A. and Lodygin, E.D., Izv. KNTs UrO RAN, 2010, vol. 1, p. 24. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, and Formation), Ermakov, E.I., Ed., St. Petersburg: Izd. S.-Peterb. Univ., 2004. Amir, S., Jouraiphy, A., Meddich, A., Gharous, M.E., Winterton, P., and Hafidi, M., J. Hazard. Mater., 2010, vol. 177, nos. 1–3, p. 524. https://doi.org/10.1016/j.jhazmat.2009.12.064 Shtin, S.M., Gorn. Inform.-Analit. Byull., 2011, no. 7, p. 82. Orlov, D.S., Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii (Humic Acids of Soils and the General Theory of Humification), Moscow: Izd. Mosk. Gos. Univ., 1990. Orlov, D.S., Sadovnikova, L.K., and Sukhanova, N.I., Khimiya pochv (Soil Chemistry), Moscow: Vysshaya Shkola, 2005. Maslak, Ya.V., Mozharova, I.V., and Smirnova, V.A., Vestn. BGU, 2011, no. 1, p. 69. Boguta, P., D’Orazio, V., Senesi, N., Sokolowska, Z., and Szewczuk-Karpisz, K., J. Environ. Manage., 2019, vol. 245, p. 367. https://doi.org/10.1016/j.jenvman.2019.05.098 Yang, C., Zeng, Q., Yang, Y., Xiao, R., Wang, Y., and Shi, H., J. Ind. Eng. Chem., 2014, vol. 20, no. 3, p. 1133. https://doi.org/10.1016/j.jiec.2013.07.001 Celebi, O., Kilikli, A., and Erten, H.N., J. Hazard. Mater., 2009, vol. 168, nos. 2–3, p. 695. https://doi.org/10.1016/j.jhazmat.2009.02.090 Yang, T. and Hodson, M.E., Sci. Total Environ., 2019, vol. 647, p. 290. https://doi.org/10.1016/j.scitotenv.2018.07.457 Gavrilov, S.V., Cand. Sci. (Eng.) Dissertation, Kazan, 2017. Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., and Piccolo, A., Sci. Hortic., 2015, vol. 196, p. 15. https://doi.org/10.1016/j.scienta.2015.09.013 Ivanov A.A., Yudina N.V., Il’ina A.A., and Lomo-vskii, O.I., Vestn. Tomsk. Gos. Pedag. Univ., 2008, no. 4, p. 38. Yao, B., Liu, Y., and Zou, D., Chemosphere, 2019, vol. 226, p. 298. https://doi.org/10.1016/j.chemosphere.2019.03.098 Silkin, S.V., Kulikov, E.E., and Popov, I.A., Tr. MFTI, 2018, vol. 10, no. 3, p. 86. Kyzas, G.Z. Bikiaris, D.N., and Lambropoulou, D.A., J. Mol. Liq., 2017, vol. 230, p. 1. https://doi.org/10.1016/j.molliq.2017.01.015 Terashima, M., Tanaka, S., and Fukushima, M., Chemosphere, 2007, vol. 69, no. 2, p. 240. https://doi.org/10.1016/j.chemosphere.2007.04.012 Promtov, M., Stepanov, A., Aleshin, A., and Kolesnikova, M., Chem. Eng. Res. Des., 2016, vol. 108, p. 217. https://doi.org/10.1016/j.cherd.2016.03.013 Jia, W., Zhai, S., Ma, C., Cao, H., and Xing, B., Ecotoxicol. Environ. Saf., 2019, vol. 169, p. 848. https://doi.org/10.1016/j.ecoenv.2018.11.072 Kovacs, P. and Posta, J., Microchem. J., 2005, vol. 79, nos. 1–2, p. 49. https://doi.org/10.1016/j.microc.2004.10.012 Li, C., Berns, A.E., Schaffer, A., Sequaris, J.M., Vereecken, H., Ji, R., and Klumpp, E., Chemosphere, 2011, vol. 84, no. 4, p. 409. https://doi.org/10.1016/j.chemosphere.2011.03.057 Gavrilov, S.V., Kanarskii, A.V., Sidorov, Yu.D., and Polivanov, M.A., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 18, p. 184. Parfenova, L.N., Trufanova, M.V., Selyanina, S.B., Bogolitsyn, K.G., Orlov, A.S., and Strigutskii, V.P., Fundam. Issled., 2014, no. 12, p. 1411. Selyanina, S.B., Zubov, I.N., Orlov, A.S., Sokolova, T.V., Yarygina, O.N., and Tatarintseva, V.G., Prirodopol’zovanie, 2018, no. 2, p. 134. Al-Faiyz, Y.S.S., Arab. J. Chem., 2017, vol. 10, p. 839. https://doi.org/10.1016/j.arabjc.2012.12.018 Kvam, C., Granese, D., Flaibani, A., Pollesello, P., and Paoletti, S., Biochem. Biophys. Res. Commun., 1993, vol. 193, no. 3, p. 927. https://doi.org/10.1006/bbrc.1993.1714 Vatankhah, G., Drogowska, M., Menard, H., and Brossard, L., J. Appl. Electrochem., 1998, vol. 28, no. 2, p. 173. https://doi.org/10.1023/A:1003230725414 Harvey, T.J., Walsh, F.C., and Nahle, A.H., J. Mol. Liq., 2018, vol. 266, p. 160. https://doi.org/10.1016/j.molliq.2018.06.014 Merkushina, G.A., Larin, S.I., and Larina, N.S., Vestn. TGU, 2013, no. 4, p. 187.