Continuous Wave and Pulse EPR Characterization of Open-Shell Ti3+ Ions Generated in Hybrid SiO2–TiO2 Monoliths

Topics in Catalysis - Tập 61 - Trang 1485-1490 - 2018
Elena Morra1, Andriy Budnyk2, Alessandro Damin1, Mario Chiesa1
1Dipartimento di Chimica & NIS Centre, Università di Torino, Turin, Italy
2International Research Center “Smart materials”, Southern Federal University, Rostov-on-Don, Russian Federation

Tóm tắt

Open-shell Ti3+ ions are generated within hybrid SiO2–TiO2 mesoporous monoliths by reaction with triethylaluminium vapors. Continuous wave and 2D pulse electron paramagnetic resonance techniques are used to investigate the local coordination environment of the Ti3+ species through detection of hyperfine interactions of the unpaired electron with magnetically active nuclei of the matrix, including natural abundant framework 29Si. The results provide evidence for the reducing power of triethylaluminium towards isolated Ti4+ ions through the formation of open-shell Ti3+ ions atomically dispersed and fully incorporated in the SiO2 framework with a local structure similar to that of titanium silicalite and no segregation of TiO2 phases at this level of Ti doping.

Tài liệu tham khảo

Dyrek K, Che M (1997) Chem Rev 97:305–332 Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320–1347 Morra E, Giamello E, Chiesa M (2017) J Magn Reson 280:89–102 Van Doorslaer S, Murphy DM (2012) Top Curr Chem 321:1–39 Telser J, Krzystek J, Ozarowski A (2014) J Biol Inorg Chem 19:297–318 Van Doorslaer S (2017) J Magn Reson 280:79–88 Jeschke G (2016) eMagRes 5:1459–1475 Spindler PE, Schöps P, Bowen AM, Endeward B, Prisner TF (2016) eMagRes 5:1477–1492 Budnyk A, Damin A, Bordiga S, Zecchina A (2012) J Phys Chem C 116:10064–10072 Notari B (1996) Adv Catal 41:253–334 Bordiga S, Bonino F, Damin A, Lamberti C (2007) Phys Chem Chem Phys 9:4854–4878 Brozek CK, Dincă M (2013) J Am Chem Soc 135:12886–12891 Morra E, Giamello E, Chiesa M (2014) Chem Eur J 20:7381–7388 Maurelli S, Vishnuvarthan M, Chiesa M, Berlier G, Van Doorslaer S (2011) J Am Chem Soc 133:7340–7343 Morra E, Maurelli S, Chiesa M, Giamello E (2015) Top Catal 58:783–795 Kerber RN, Kermagoret A, Callens E, Florian P, Massiot D, Lesage A, Copéret C, Delbecq F, Rozanska X, Sautet P (2012) J Am Chem Soc 134:6767–6775 Figgis BN (1967) John introduction to ligand fields. Wiley, New York Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York Schweiger A, Jeschke G (2001) Principles of electron paramagnetic resonance. Oxford University Press, Oxford Pöppl A, Kevan L (1996) J Phys Chem 100:3387–3394 Griffith JS (1964) The theory of transition-metal ions. Cambridge University Press, Cambridge Solntsev VP, Yurkin AM (2000) Cryst Rep 45:128–132 Zamani S, Meynen V, Hanu AM, Mertens M, Popovici E, Van Doorslaer S, Cool P (2009) Phys Chem Chem Phys 11:5823–5832 Fitzpatrick JAJ, Manby FR, Western CM (2005) J Chem Phys 122:084312 Höfer P, Grupp A, Nebenfür H, Mehring M (1986) Chem Phys Lett 132:279–282 Stoll S, Schweiger A (2006) Magn Reson 178:42–55