Approximation of SDEs: a stochastic sewing approach

Springer Science and Business Media LLC - Tập 181 - Trang 975-1034 - 2021
Oleg Butkovsky1, Konstantinos Dareiotis2, Máté Gerencsér3
1Weierstrass Institute, Berlin, Germany
2University of Leeds, Woodhouse, Leeds, UK
3TU Vienna, Wien, Austria

Tóm tắt

We give a new take on the error analysis of approximations of stochastic differential equations (SDEs), utilizing and developing the stochastic sewing lemma of Lê (Electron J Probab 25:55, 2020. https://doi.org/10.1214/20-EJP442 ). This approach allows one to exploit regularization by noise effects in obtaining convergence rates. In our first application we show convergence (to our knowledge for the first time) of the Euler–Maruyama scheme for SDEs driven by fractional Brownian motions with non-regular drift. When the Hurst parameter is $$H\in (0,1)$$ and the drift is $$\mathcal {C}^\alpha $$ , $$\alpha \in [0,1]$$ and $$\alpha >1-1/(2H)$$ , we show the strong $$L_p$$ and almost sure rates of convergence to be $$((1/2+\alpha H)\wedge 1) -\varepsilon $$ , for any $$\varepsilon >0$$ . Our conditions on the regularity of the drift are optimal in the sense that they coincide with the conditions needed for the strong uniqueness of solutions from Catellier and Gubinelli (Stoch Process Appl 126(8):2323–2366, 2016. https://doi.org/10.1016/j.spa.2016.02.002 ). In a second application we consider the approximation of SDEs driven by multiplicative standard Brownian noise where we derive the almost optimal rate of convergence $$1/2-\varepsilon $$ of the Euler–Maruyama scheme for $$\mathcal {C}^\alpha $$ drift, for any $$\varepsilon ,\alpha >0$$ .

Tài liệu tham khảo

Altmeyer, R.: Estimating occupation time functionals. ArXiv e-prints arXiv: 1706.03418 Bao, J., Huang, X., Yuan, C.: Convergence rate of Euler–Maruyama scheme for SDEs with Hölder–Dini continuous drifts. J. Theo. Probob. (2018). https://doi.org/10.1007/s10959-018-0854-9 Butkovsky, O., Mytnik, L.: Regularization by noise and flows of solutions for a stochastic heat equation. Ann. Probab. 47(1), 165–212 (2019). https://doi.org/10.1214/18-AOP1259 Baños, D., Nilssen, T., Proske, F.: Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDE’s with singular drift. ArXiv e-prints arXiv: 1511.02717 Bally, V., Talay, D.: The law of the euler scheme for stochastic differential equations. Probab. Theory Relat. Fields 104(1), 43–60 (1996). https://doi.org/10.1007/BF01303802 Bally, V., Talay, D.: The law of the euler scheme for stochastic differential equations: Ii: convergence rate of the density. Monte Carlo Methods Appl. 2(2), 93–128 (1996). https://doi.org/10.1515/mcma.1996.2.2.93 Barlow, M.T., Yor, M.: Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49(2), 198–229 (1982). https://doi.org/10.1016/0022-1236(82)90080-5 Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of odes. Stoch. Process. Appl. 126(8), 2323–2366 (2016). https://doi.org/10.1016/j.spa.2016.02.002 Davie, A.M.: Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN 26, 24 (2007). https://doi.org/10.1093/imrn/rnm124 Dareiotis, K., Gerencsér, M.: On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift. Electron. J. Probab. 25, 1–18 (2020). https://doi.org/10.1214/20-EJP479 De Angelis, T., Germain, M., Issoglio, E.:. A numerical scheme for stochastic differential equations with distributional drift. ArXiv e-prints arXiv: 1906.11026 (2019) Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999). https://doi.org/10.1023/A:1008634027843 Faure, O.: Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, Ecole National des Ponts et Chausses (1992) Feyel, D., de La Pradelle, A.: Curvilinear integrals along enriched paths. Electron. J. Probab. 11(34), 860–892 (2006). https://doi.org/10.1214/EJP.v11-356 Friz, P., Riedel, S.: Convergence rates for the full gaussian rough paths. Ann. Inst. H. Poincaré Probab. Stat. 50(1), 154–194 (2014). https://doi.org/10.1214/12-AIHP507 Friedman, A.: Partial differential equations of parabolic type. R.E. Krieger Pub. Co. (1983) Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6 (2015). https://doi.org/10.1017/fmp.2015.2 Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996). https://doi.org/10.1007/BF01203833 Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004). https://doi.org/10.1016/j.jfa.2004.01.002 Gyöngy, I.: A Note on Euler’s Approximations. Potential Anal. 8(3), 205–216 (1998). https://doi.org/10.1023/A:1016557804966 Hairer, M.: Advanced stochastic analysis, 2016. http://hairer.org/notes/Malliavin.pdf. Lecture notes Hu, Y., Liu, Y., Nualart, D.: Rate of convergence and asymptotic error distribution of euler approximation schemes for fractional diffusions. Ann. Appl. Probab. 26(2), 1147–1207 (2016). https://doi.org/10.1214/15-AAP1114 Jakubowski, A.: An almost sure approximation for the predictable process in the Doob-Meyer decomposition theorem. In: Séminaire de Probabilités XXXVIII, vol. 1857 of Lecture Notes in Math., pp. 158–164. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-31449-3_11 Jacod, J., Shiryaev, A. N.: Limit theorems for stochastic processes, vol. 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second ed. (2003). https://doi.org/10.1007/978-3-662-05265-5 Kohatsu-Higa, A., Makhlouf, A., Ngo, H.: Approximations of non-smooth integral type functionals of one dimensional diffusion processes. Stoch. Process. Appl. 124(5), 1881–1909 (2014). https://doi.org/10.1016/j.spa.2014.01.003 Kunita, H.: Stochastic flows and stochastic differential equations, vol. 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Reprint of the 1990 original Lê, K.: A stochastic sewing lemma and applications. Electron. J. Probab. 25, 55 (2020). https://doi.org/10.1214/20-EJP442 Leobacher, G., Szölgyenyi, M.: Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient. Numerische Mathematik 138(1), 219–239 (2018). https://doi.org/10.1007/s00211-017-0903-9 Mikulevičius, R., Xu, F.: On the rate of convergence of strong Euler approximation for SDEs driven by Levy processes. Stochastics 90(4), 569–604 (2018). https://doi.org/10.1080/17442508.2017.1381095 Müller-Gronbach, T., Yaroslavtseva,L.: On the performance of the Euler-Maruyama scheme for SDEs with discontinuous drift coefficient. ArXiv e-prints arXiv: 1809.08423 (2018) Neuenkirch, A.: Optimal approximation of sde’s with additive fractional noise. J. Compl. 22(4), 459–474 (2006). https://doi.org/10.1016/j.jco.2006.02.001 Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Process. Appl. 102(1), 103–116 (2002). https://doi.org/10.1016/S0304-4149(02)00155-2 Nualart, D., Ouknine,Y.: Stochastic differential equations with additive fractional noise and locally unbounded drift. In: Stochastic inequalities and applications, vol. 56 of Progr. Probab., pp. 353–365. Birkhäuser, Basel (2003) Neuenkirch, A., Szölgyenyi, M.: The Euler–Maruyama scheme for SDEs with irregular drift: convergence rates via reduction to a quadrature problem. IMA. J. Numer. Anal. 41(2), 1164–1196 (2021). https://doi.org/10.1093/imanum/draa007 Nualart, D.: The Malliavin Calculus and Related Topics. Springer-Verlag (2006). https://doi.org/10.1007/3-540-28329-3 Pamen, O.M., Taguchi, D.: Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Hölder continuous drift coefficient. Stoch. Process. Appl. 127(8), 2542–2559 (2017). https://doi.org/10.1016/j.spa.2016.11.008 Shevchenko, G.: Fractional Brownian motion in a nutshell. In: Analysis of fractional stochastic processes, vol. 36 of Int. J. Modern Phys. Conf. Ser., 1560002, 16. World Sci. Publ., Hackensack, NJ (2015) Veretennikov, A.J.: Strong solutions and explicit formulas for solutions of stochastic integral equations. Math. Sb. 111(153), 434–452 (1980) Zvonkin, A.K.: A transformation of the phase space of a diffusion process that will remove the drift. Mat. Sb. 93(135), 129–149 (1974)