Approximation of SDEs: a stochastic sewing approach
Tóm tắt
We give a new take on the error analysis of approximations of stochastic differential equations (SDEs), utilizing and developing the stochastic sewing lemma of Lê (Electron J Probab 25:55, 2020.
https://doi.org/10.1214/20-EJP442
). This approach allows one to exploit regularization by noise effects in obtaining convergence rates. In our first application we show convergence (to our knowledge for the first time) of the Euler–Maruyama scheme for SDEs driven by fractional Brownian motions with non-regular drift. When the Hurst parameter is
$$H\in (0,1)$$
and the drift is
$$\mathcal {C}^\alpha $$
,
$$\alpha \in [0,1]$$
and
$$\alpha >1-1/(2H)$$
, we show the strong
$$L_p$$
and almost sure rates of convergence to be
$$((1/2+\alpha H)\wedge 1) -\varepsilon $$
, for any
$$\varepsilon >0$$
. Our conditions on the regularity of the drift are optimal in the sense that they coincide with the conditions needed for the strong uniqueness of solutions from Catellier and Gubinelli (Stoch Process Appl 126(8):2323–2366, 2016.
https://doi.org/10.1016/j.spa.2016.02.002
). In a second application we consider the approximation of SDEs driven by multiplicative standard Brownian noise where we derive the almost optimal rate of convergence
$$1/2-\varepsilon $$
of the Euler–Maruyama scheme for
$$\mathcal {C}^\alpha $$
drift, for any
$$\varepsilon ,\alpha >0$$
.
Tài liệu tham khảo
Altmeyer, R.: Estimating occupation time functionals. ArXiv e-prints arXiv: 1706.03418
Bao, J., Huang, X., Yuan, C.: Convergence rate of Euler–Maruyama scheme for SDEs with Hölder–Dini continuous drifts. J. Theo. Probob. (2018). https://doi.org/10.1007/s10959-018-0854-9
Butkovsky, O., Mytnik, L.: Regularization by noise and flows of solutions for a stochastic heat equation. Ann. Probab. 47(1), 165–212 (2019). https://doi.org/10.1214/18-AOP1259
Baños, D., Nilssen, T., Proske, F.: Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDE’s with singular drift. ArXiv e-prints arXiv: 1511.02717
Bally, V., Talay, D.: The law of the euler scheme for stochastic differential equations. Probab. Theory Relat. Fields 104(1), 43–60 (1996). https://doi.org/10.1007/BF01303802
Bally, V., Talay, D.: The law of the euler scheme for stochastic differential equations: Ii: convergence rate of the density. Monte Carlo Methods Appl. 2(2), 93–128 (1996). https://doi.org/10.1515/mcma.1996.2.2.93
Barlow, M.T., Yor, M.: Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49(2), 198–229 (1982). https://doi.org/10.1016/0022-1236(82)90080-5
Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of odes. Stoch. Process. Appl. 126(8), 2323–2366 (2016). https://doi.org/10.1016/j.spa.2016.02.002
Davie, A.M.: Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN 26, 24 (2007). https://doi.org/10.1093/imrn/rnm124
Dareiotis, K., Gerencsér, M.: On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift. Electron. J. Probab. 25, 1–18 (2020). https://doi.org/10.1214/20-EJP479
De Angelis, T., Germain, M., Issoglio, E.:. A numerical scheme for stochastic differential equations with distributional drift. ArXiv e-prints arXiv: 1906.11026 (2019)
Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999). https://doi.org/10.1023/A:1008634027843
Faure, O.: Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, Ecole National des Ponts et Chausses (1992)
Feyel, D., de La Pradelle, A.: Curvilinear integrals along enriched paths. Electron. J. Probab. 11(34), 860–892 (2006). https://doi.org/10.1214/EJP.v11-356
Friz, P., Riedel, S.: Convergence rates for the full gaussian rough paths. Ann. Inst. H. Poincaré Probab. Stat. 50(1), 154–194 (2014). https://doi.org/10.1214/12-AIHP507
Friedman, A.: Partial differential equations of parabolic type. R.E. Krieger Pub. Co. (1983)
Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6 (2015). https://doi.org/10.1017/fmp.2015.2
Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996). https://doi.org/10.1007/BF01203833
Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004). https://doi.org/10.1016/j.jfa.2004.01.002
Gyöngy, I.: A Note on Euler’s Approximations. Potential Anal. 8(3), 205–216 (1998). https://doi.org/10.1023/A:1016557804966
Hairer, M.: Advanced stochastic analysis, 2016. http://hairer.org/notes/Malliavin.pdf. Lecture notes
Hu, Y., Liu, Y., Nualart, D.: Rate of convergence and asymptotic error distribution of euler approximation schemes for fractional diffusions. Ann. Appl. Probab. 26(2), 1147–1207 (2016). https://doi.org/10.1214/15-AAP1114
Jakubowski, A.: An almost sure approximation for the predictable process in the Doob-Meyer decomposition theorem. In: Séminaire de Probabilités XXXVIII, vol. 1857 of Lecture Notes in Math., pp. 158–164. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-31449-3_11
Jacod, J., Shiryaev, A. N.: Limit theorems for stochastic processes, vol. 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second ed. (2003). https://doi.org/10.1007/978-3-662-05265-5
Kohatsu-Higa, A., Makhlouf, A., Ngo, H.: Approximations of non-smooth integral type functionals of one dimensional diffusion processes. Stoch. Process. Appl. 124(5), 1881–1909 (2014). https://doi.org/10.1016/j.spa.2014.01.003
Kunita, H.: Stochastic flows and stochastic differential equations, vol. 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Reprint of the 1990 original
Lê, K.: A stochastic sewing lemma and applications. Electron. J. Probab. 25, 55 (2020). https://doi.org/10.1214/20-EJP442
Leobacher, G., Szölgyenyi, M.: Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient. Numerische Mathematik 138(1), 219–239 (2018). https://doi.org/10.1007/s00211-017-0903-9
Mikulevičius, R., Xu, F.: On the rate of convergence of strong Euler approximation for SDEs driven by Levy processes. Stochastics 90(4), 569–604 (2018). https://doi.org/10.1080/17442508.2017.1381095
Müller-Gronbach, T., Yaroslavtseva,L.: On the performance of the Euler-Maruyama scheme for SDEs with discontinuous drift coefficient. ArXiv e-prints arXiv: 1809.08423 (2018)
Neuenkirch, A.: Optimal approximation of sde’s with additive fractional noise. J. Compl. 22(4), 459–474 (2006). https://doi.org/10.1016/j.jco.2006.02.001
Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Process. Appl. 102(1), 103–116 (2002). https://doi.org/10.1016/S0304-4149(02)00155-2
Nualart, D., Ouknine,Y.: Stochastic differential equations with additive fractional noise and locally unbounded drift. In: Stochastic inequalities and applications, vol. 56 of Progr. Probab., pp. 353–365. Birkhäuser, Basel (2003)
Neuenkirch, A., Szölgyenyi, M.: The Euler–Maruyama scheme for SDEs with irregular drift: convergence rates via reduction to a quadrature problem. IMA. J. Numer. Anal. 41(2), 1164–1196 (2021). https://doi.org/10.1093/imanum/draa007
Nualart, D.: The Malliavin Calculus and Related Topics. Springer-Verlag (2006). https://doi.org/10.1007/3-540-28329-3
Pamen, O.M., Taguchi, D.: Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Hölder continuous drift coefficient. Stoch. Process. Appl. 127(8), 2542–2559 (2017). https://doi.org/10.1016/j.spa.2016.11.008
Shevchenko, G.: Fractional Brownian motion in a nutshell. In: Analysis of fractional stochastic processes, vol. 36 of Int. J. Modern Phys. Conf. Ser., 1560002, 16. World Sci. Publ., Hackensack, NJ (2015)
Veretennikov, A.J.: Strong solutions and explicit formulas for solutions of stochastic integral equations. Math. Sb. 111(153), 434–452 (1980)
Zvonkin, A.K.: A transformation of the phase space of a diffusion process that will remove the drift. Mat. Sb. 93(135), 129–149 (1974)