Shape controlled synthesis of Cu3BiS3 nano- and microstructures by PEG assisted solvothermal method and functional properties

Ceramics International - Tập 44 - Trang 15385-15392 - 2018
T. Manimozhi1, J. Archana2, K. Ramamurthi1
1Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
2Center for Materials Science and Nano Devices, Department of Physics, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

Tài liệu tham khảo

Hillhouse, 2009, Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics, Curr. Opin. Colloid Interface Sci., 14, 245, 10.1016/j.cocis.2009.05.002 Gur, 2005, Air-stable all-inorganic nanocrystal solar cells processed from solution, Science, 310, 462, 10.1126/science.1117908 Connor, 2009, Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods, J. Am. Chem. Soc., 131, 4962, 10.1021/ja809901u Reddy, 1990, Polycrystalline CuGaSe2 films for solar energy conversion, Mater. Lett., 10, 275, 10.1016/0167-577X(90)90031-G George, 2005 Gerein, 2006, Synthesis of Cu3BiS3 thin films by heating metal and metal sulfide precursor films under hydrogen sulfide, Chem. Mater., 18, 6289, 10.1021/cm061452z Shen, 2013, Rational tuning the optical properties of metal sulfide nanocrystals and their applications, Chem. Mater., 25, 1166, 10.1021/cm302482d Murali, 2013, Tailoring the band gap and transport properties of Cu3BiS3 nanopowders for photodetector applications, J. Nanosci. Nanotechnol., 13, 3901, 10.1166/jnn.2013.7133 Santhanapriya, 2016, Solvothermal-assisted synthesis of Cu3XS3 (X= Bi and Sb) chalcogenide nanoparticles, Synth. React. Inorg. Met. -Org. Nano-Metal. Chem., 46, 1388, 10.1080/15533174.2015.1095768 Yin, 2014, Synthesis of Cu3BiS3 nanosheet films on TiO2 nanorod arrays by a solvothermal route and their photoelectrochemical characteristics, CrystEngComm, 16, 2795, 10.1039/c3ce41958d Viezbicke, 2013, Solvothermal synthesis of Cu3BiS3 enabled by precursor complexing, ACS Sustain. Chem. Eng., 1, 306, 10.1021/sc3000477 Zhong, 2012, Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods, Mater. Lett., 70, 63, 10.1016/j.matlet.2011.11.098 Murali, 2014, Nanocomposite based organic–inorganic Cu3BiS3 high sensitive hybrid photonic devices, J. Nanosci. Nanotechnol., 14, 1 Yan, 2012, Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane, J. Mater. Sci., 47, 4159, 10.1007/s10853-012-6270-0 Aup-Ngoen, 2011, Cyclic microwave-assisted synthesis of Cu3BiS3 dendrites using L-cysteine as a sulfur source and complexing agent, Mater. Lett., 65, 442, 10.1016/j.matlet.2010.10.047 Chen, 2003, The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route, J. Cryst. Growth, 253, 512, 10.1016/S0022-0248(03)01108-4 Zeng, 2012, Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries, CrystEngComm, 14, 550, 10.1039/C1CE06056B Shen, 2003, Synthesis of ternary sulfides Cu(Ag)–Bi–S coral-shaped crystals from single-source precursors, J. Cryst. Growth, 257, 293, 10.1016/S0022-0248(03)01454-4 Deng, 2014, A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals, New J. Chem., 38, 77, 10.1039/C3NJ00928A Yan, 2013, Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals, Nanoscale, 5, 1789, 10.1039/c3nr33268c Yakushev, 2014, Electronic and structural characterisation of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films, 562, 195, 10.1016/j.tsf.2014.04.057 Estrella, 2003, Semiconducting Cu3BiS3 thin films formed by the solid-state reaction of CuS and bismuth thin films, Semicond. Sci. Technol., 18, 190, 10.1088/0268-1242/18/2/322 Mesa, 2010, Transient surface photovoltage of p-type Cu3BiS3, Appl. Phys. Lett., 96, 082113, 10.1063/1.3334728 Murali, 2014, Near-infrared photoactive Cu3BiS3 thin films by co-evaporation, J. Appl. Phys., 115, 173109, 10.1063/1.4875495 Mesa, 2014, Hall Effect and transient surface photovoltage (SPV) study of Cu3BiS3 thin films, Univ. Sci., 19, 99, 10.11144/Javeriana.SC19-2.ehef Balasubramanian, 2017, Effect of deposition temperature on structural, optical and electrical properties of copper bismuth sulphide (CuBiS2) thin films deposited by chemical bath deposition, Mater. Sci.-Pol., 35, 329, 10.1515/msp-2017-0056 Li, 2017, Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window, Biomaterials, 112, 164, 10.1016/j.biomaterials.2016.10.024 Suriyawong, 2016, Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells, J. Colloid Interface Sci., 473, 60, 10.1016/j.jcis.2016.03.062 Gou, 2006, Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route, J. Am. Chem. Soc., 128, 7222, 10.1021/ja0580845 Zhou, 2006, Hollow microscale organization of Bi2S3 nanorods, Nanotechnology, 17, 3806, 10.1088/0957-4484/17/15/033 Wang, 2016, Controllable synthesis, characterization of ZnS nanostructured spheres, J. Mater. Sci: Mater. Electron., 27, 7167 Pawar, 2010, Effect of Sn2+ doping on optical properties of thiourea capped Zns nanoparticles, Chalcogenide Lett., 7, 139 Verma, 2013, Green synthesis of nanocrystalline Cu2ZnSnS4 powder using hydrothermal route, J. Nanomater., 2013, 1 Zhang, 2016, One-step synthesis of Bi2S3/BiOX and Bi2S3/(BiO)2CO3 heterojunction photocatalysts by using aqueous thiourea solution as both solvent and sulfur source, ChemistrySelect, 1, 6136, 10.1002/slct.201601364 Cheng, 2010, A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst, Cryst. Eng. Comm., 12, 144, 10.1039/B914902C Scaldaferri, 2009, Theoretical study of the reaction of hydrogen sulphide with nitrate radical, Chem. Phys. Lett., 470, 203, 10.1016/j.cplett.2009.01.070 Burton, 2009, On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems, Microporous Mesoporous Mater., 117, 75, 10.1016/j.micromeso.2008.06.010 Pattrick, 1997, The structure of amorphous copper sulfide precipitates: an X-ray absorption study, Geochim. Cosmochim. Acta, 61, 2023, 10.1016/S0016-7037(97)00061-6 〈https://srdata.nist.gov/xps/Default.aspx〉. Yu. Stakheev, 2007, Combined XPS and TPR study of sulfur removal from a Pt/BaO/Al2O3 NOx storage reduction catalyst, Top. Catal., 143, 42 Schuhl, 1983, Study of mixed-oxide catalysts containing bismuth, vanadium and antimony, J. Chem. Soc. Faraday Trans., 1, 2055, 10.1039/f19837902055 Hu, 2003, Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3BiS3 and Pb1−xBi2x/3S, Mater. Chem. Phys., 78, 650, 10.1016/S0254-0584(02)00219-5 Kang, 2008, The influence of thiourea on copper electrodeposition: adsorbate identification and effect on electrochemical nucleation, Thin Solid Films, 516, 3761, 10.1016/j.tsf.2007.06.069 Harish, 2014, Controlled synthesis and morphological investigation of self-assembled CuO nanostructures, Mater. Lett., 121, 129, 10.1016/j.matlet.2014.01.130 Chalapathi, 2017, Si-Hyun Part, Effect of thiourea concentration on the growth and properties of Cu3SnS4 thin films prepared by spray pyrolysis, J. Mater. Sci Mater. Electron., 28, 2954, 10.1007/s10854-016-5880-8 Deng, 2017, One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties, Sci. Rep., 7, 3877, 10.1038/s41598-017-04270-y Sofronov, 2013, Effect of anions and medium pH on the formation of ZnS micro- and nanoparticles from thiourea solutions, J. Biol. Phys. Chem., 13, 85, 10.4024/08SO13A.jbpc.13.03 Bulgakova, 2016, The effect of the precipitation conditions on the morphology and the sorption properties of CuS particles, Prot. Met. Phys. Chem. Surf., 52, 448, 10.1134/S2070205116030060 Zhou, 2006, Microsphere organization of nanorods directed by PEG linear polymer, Langmuir, 22, 1383, 10.1021/la052105r de Queiroz, 2008, Modeling of ZnS quantum dots synthesis by DFT techniques, J. Mol. Struct., 873, 121, 10.1016/j.molstruc.2007.03.013 Dunne, 2014, The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials, Nanoscale, 6, 2406, 10.1039/C3NR05749F Biswas, 2007, Effect of the precursors and solvents on the size, shape and crystal structure of manganese sulfide crystals in solvothermal synthesis, Mater. Sci. Eng. B, 142, 69, 10.1016/j.mseb.2007.06.019 Krichevsky, 1993, Correlated Ostwald ripening in two dimensions, Phys. Rev. Lett., 70, 1473, 10.1103/PhysRevLett.70.1473 Tauc, 1974 Gerein, 2006, One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices, Chem. Mater., 18, 6297, 10.1021/cm061453r Mesa, 2009, Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two – step process, J. Phys.: Conf. Ser., 167, 012019 Mesa, 2010, Study of the growth process and optoelectrical properties of nanocrystalline Cu3BiS3 thin films, Phys. Status Solidi C, 7, 917, 10.1002/pssc.200982860