Enzymes from piezophiles
Tài liệu tham khảo
Winter, 2005, High pressure effects in molecular bioscience, 29
Meersman, 2013, 607
Fang, 2010, Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry, Trends Microbiol., 18, 413, 10.1016/j.tim.2010.06.006
Prieur, 2009, Piezophilic prokaryotes, 281
Yayanos, 1986, Evolutional and ecological implications of the properties of deep-sea barophilic bacteria, Proc. Natl. Acad. Sci. U. S. A., 83, 9542, 10.1073/pnas.83.24.9542
Picard, 2013, Pressure as an environmental parameter for microbial life - a review, Biophys. Chem., 183, 30, 10.1016/j.bpc.2013.06.019
Kallmeyer, 2012, Global distribution of microbial abundance and biomass in subseafloor sediment, Proc. Natl. Acad. Sci. U. S. A., 109, 16213, 10.1073/pnas.1203849109
Whitman, 1998, Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. U. S. A., 95, 6578, 10.1073/pnas.95.12.6578
Yayanos, 2001, Deep-sea piezophilic bacteria, Methods Microbiol., 30, 615, 10.1016/S0580-9517(01)30065-X
Kato, 2012, Microbiology of piezophiles in deep-sea environments, 233
Yayanos, 1995, Microbiology to 10,500 meters in the deep sea, Ann. Rev. Microbiol., 49, 777, 10.1146/annurev.mi.49.100195.004021
2017
Pal, 2014
Somero, 1995, Proteins and temperature, Ann. Rev. Physiol., 57, 453, 10.1146/annurev.ph.57.030195.000355
Jaenicke, 1990, Proteins under extreme physical conditions, FEBS Lett., 268, 344, 10.1016/0014-5793(90)81283-T
D’Amico, 2003, Activity-stability relationships in extremophilic enzymes, J. Biol. Chem., 278, 7891, 10.1074/jbc.M212508200
Závodszky, 1998, Adjustment of conflexibility is a key event in the thermal adaptation of proteins, Proc. Natl. Acad. Sci. U. S. A., 95, 7406, 10.1073/pnas.95.13.7406
Feller, 2003, Psychrophilic enzymes: hot topics in cold adaptation, Nat. Rev. Microbiol., 1, 200, 10.1038/nrmicro773
Georlette, 2004, Some like it cold: biocatalysis at low temperatures, FEMS Microbiol. Rev., 28, 25, 10.1016/j.femsre.2003.07.003
Feller, 2013, Psychrophilic enzymes: from folding to function and biotechnology, Scientifica, 512840
Berezovsky, 2005, Physics and evolution of thermophilic adaptation, Proc. Natl. Acad. Sci. U. S. A., 102, 12742, 10.1073/pnas.0503890102
Nguyen, 2017, High-pressure NMR techniques for the study of protein dynamics, folding and aggregation, J. Magn. Reson., 277, 179, 10.1016/j.jmr.2017.01.009
Boehr, 2010, Millisecond timescale fluctuations in dihydrofolate reductase are equisitely sensitive to the bound ligands, Proc. Natl. Acad. Sci. U. S. A., 107, 1373, 10.1073/pnas.0914163107
Meinhold, 2007, Picosecond fluctuating protein energy landscape mapped by pressure-temperature molecular dynamics simulation, Proc. Natl. Acad. Sci. U. S. A., 104, 17261, 10.1073/pnas.0708199104
Rodgers, 2017, Quasiharmonic analysis of protein energy landscapes from pressure-temperature molecular dynamics simulations, J. Chem. Phys., 147, 125103, 10.1063/1.5003823
Bridgman, 1914, The coagulation of albumen by pressure, J. Biol. Chem., 19, 511, 10.1016/S0021-9258(18)88287-4
Balny, 2006, Review: what lies in the future of high-pressure bioscience?, Biochim. Biophys. Acta, 1764, 632, 10.1016/j.bbapap.2005.10.004
Gross, 1994, Review: proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes, Eur. J. Biochem., 221, 617, 10.1111/j.1432-1033.1994.tb18774.x
Kharakoz, 2000, Protein compressibility, dynamics, and pressure, Biophys. J., 79, 511, 10.1016/S0006-3495(00)76313-2
Wilton, 2008, Pressure-induced changes in the solution structure of the GB1 domain of protein G, Proteins Struc. Funct. Bioinf., 71, 1432, 10.1002/prot.21832
Huang, 2016, A molecular perspective on the limits of life: enzymes under pressure, Condens. Matter Phys., 19, 1, 10.5488/CMP.19.22801
Nagae, 2012, High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase, Acta Crystallogr., D68, 300
Gekko, 2002, Review: compressibility gives new insight into protein dynamics and enzyme function, Biochim. Biophys. Acta, 1595, 382, 10.1016/S0167-4838(01)00358-2
Kamiyama, 2000, Effect of ligand binding on the flexibility of dihydrofolate reductase as revealed by compressibility, Biochim. Biophys. Acta, 1478, 257, 10.1016/S0167-4838(00)00019-4
Huang, 2017, Extreme biophysics: enzymes under pressure, J. Comput. Chem., 38, 1174, 10.1002/jcc.24737
Kundrot, 1987, J. Mol. Biol., 193, 157, 10.1016/0022-2836(87)90634-6
Ascone, 2010, Acta Crystallogr., D66, 654
Heremans, 1982, High pressure effects on proteins and other biomolecules, Annu. Rev. Biophys. Bioeng., 11, 1, 10.1146/annurev.bb.11.060182.000245
Royer, 2002, Review: revisiting volume changes in pressure-induced protein unfolding, Biochim. Biophys. Acta, 1595, 201, 10.1016/S0167-4838(01)00344-2
Silva, 2001, New insights into protein folding, dynamics and structure from high pressure studies, Trends Biochem. Sci., 26, 612, 10.1016/S0968-0004(01)01949-1
Frye, 1998, Probing the contribution of internal cavities to the volume change of protein unfolding under pressure, Protein Sci., 7, 2217, 10.1002/pro.5560071020
Roche, 2012, Cavities determine the pressure unfolding of proteins, Proc. Natl. Acad. Sci. U. S. A., 109, 6945, 10.1073/pnas.1200915109
Collins, 2005, Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation, Proc. Natl. Acad. Sci. U. S. A., 46, 16668, 10.1073/pnas.0508224102
Nucci, 2014, Role of cavities and hydration in the pressure unfolding of T4 lysozyme, Proc. Natl. Acad. Sci. U. S. A., 111, 13846, 10.1073/pnas.1410655111
Mombelli, 2002, Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings, Biochim. Biophys. Acta, 1595, 392, 10.1016/S0167-4838(01)00361-2
Panick, 1998, Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy, J. Mol. Biol., 275, 389, 10.1006/jmbi.1997.1454
Hummer, 1998, The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins, Proc. Natl. Acad. Sci. U. S. A., 95, 1552, 10.1073/pnas.95.4.1552
Silva, 1993, Pressure stability of proteins, Annu. Rev. Phys. Chem., 44, 89, 10.1146/annurev.pc.44.100193.000513
Hervé, 2017, Activation of latent dihydroorotase from Aquifex aeolicus by pressure, J. Biol. Chem., 292, 629, 10.1074/jbc.M116.739862
Akasaka, 2001, Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR, Biochemistry, 40, 8665, 10.1021/bi010312u
Kitahara, 2000, High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase, Biochemistry, 39, 12789, 10.1021/bi0009993
Ohmae, 2008, Effects of pressure on enzyme functiion of Escherichia coli dihydrofolate reductase, Biochim. Biophys. Acta, 1784, 1115, 10.1016/j.bbapap.2008.04.005
Kitahara, 2005, NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar–3 kbar, J. Mol. Biol., 347, 277, 10.1016/j.jmb.2005.01.052
Meinhold, 2005, Pressure-dependent transition in protein dynamics at about 4 kbar revealed by molecular dynamics simulations, Phys. Rev. E, 72, 061908, 10.1103/PhysRevE.72.061908
Kitahara, 2003, Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding, Proc. Natl. Acad. Sci. U. S. A., 100, 3167, 10.1073/pnas.0630309100
Li, 2006, Conformational fluctuations of proteins revealed by variable pressure NMR, Biochim. Biophys. Acta, 1764, 331, 10.1016/j.bbapap.2005.12.014
Boonyaratanakornkit, 2002, Review: pressure effects on intra- and intermolecular interactions within proteins, Biochim. Biophys. Acta, 1595, 235, 10.1016/S0167-4838(01)00347-8
Ohmae, 2007, Review: pressure effects on enzyme functions, J. Biol. Macromol., 7, 23
Ohmae, 2012, Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli, Biochim. Biophys. Acta, 1824, 511, 10.1016/j.bbapap.2012.01.001
Northrop, 2002, Review: effects of high pressure on enzymatic activity, Biochim. Biophys. Acta, 1595, 71, 10.1016/S0167-4838(01)00335-1
Barstow, 2008, Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift, Proc. Natl. Acad. Sci. U. S. A., 105, 13362, 10.1073/pnas.0802252105
Kasahara, 2009, Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench, Biosci. Biotechnol. Biochem., 73, 2541, 10.1271/bbb.90448
Bartlett, 2002, Review: pressure effects on in vivo microbial processes, Biochim. Biophys. Acta, 1595, 367, 10.1016/S0167-4838(01)00357-0
Eloe, 2011, Going deeper: metagenome of a hadopelagic microbial community, Plos One, 6, e20388, 10.1371/journal.pone.0020388
Zhang, 2015, Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles, Curr. Opin. Biotechnol., 33, 157, 10.1016/j.copbio.2015.02.013
Harrison, 2013, The limits for life under multiple extremes, Trends Microbiol., 21, 204, 10.1016/j.tim.2013.01.006
Kaye, 2004, Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species from deep-sea hydrothermal vent and sea surface environments, Appl. Environ. Microbiol., 70, 6220, 10.1128/AEM.70.10.6220-6229.2004
Martin, 2002, Solute accumulation in the deep-sea bacterium Photobacterium profundum, Extremophiles, 6, 507, 10.1007/s00792-002-0288-1
Amrani, 2014, Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure, Plos One, 9, e106831, 10.1371/journal.pone.0106831
Ohmae, 2013, Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and the active-site mutant D27E, Biochim. Biophys. Acta, 1834, 2782, 10.1016/j.bbapap.2013.09.024
Herberhold, 2004, Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease, Biochemistry, 43, 3336, 10.1021/bi036106z
Reed, 2013, Review: protein adaptations in archaeal extremophiles, Archaea, 2013, 373275, 10.1155/2013/373275
Ohmae, 2013, Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects, Extremophiles, 17, 701, 10.1007/s00792-013-0556-2
Meersman, 2002, Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin, Biophys. J., 82, 2635, 10.1016/S0006-3495(02)75605-1
Hammes, 2011, Flexibility, diversity, and cooperativity: pillars of enzyme catalysis, Biochemistry, 50, 10422, 10.1021/bi201486f
Berman, 2000, The Protein Data Bank, Nucleic Acids Res., 28, 235, 10.1093/nar/28.1.235
Sawaya, 1997, Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence, Biochemistry, 36, 586, 10.1021/bi962337c
Hay, 2009, Are the catalytic properties of enzymes from piezophilic organisms pressure adapted?, ChemBioChem, 10, 2348, 10.1002/cbic.200900367
Xu, 2003, Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments, Int. J. Sys. Evol. Microbiol., 53, 533, 10.1099/ijs.0.02228-0
Nagae, 2012, Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1, Acta Crysta., F68, 265
Kato, 1998, Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters, Appl. Environ. Microbiol., 64, 1510, 10.1128/AEM.64.4.1510-1513.1998
Abboud, 2005, Low-temperature growth of Shewanella oneidensis MR-1, Appl. Environ. Microbiol., 71, 811, 10.1128/AEM.71.2.811-816.2005
Murakami, 2010, Cloning and characterization of dihydrofolate reductases from deep-sea bacteria, J. Biochem. Tokyo, 147, 591, 10.1093/jb/mvp206
Murakami, 2011, Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, Extremophiles, 15, 165, 10.1007/s00792-010-0345-0
Evans, 2010, Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda, ChemBioChem, 11, 2010, 10.1002/cbic.201000341
Xu, 2003, Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature?, J. Bacteriol., 185, 5519, 10.1128/JB.185.18.5519-5526.2003
Loveridge, 2011, The role of large-scale motions in catalysis by dihydrofolate reductase, J. Am. Chem. Soc., 113, 20561, 10.1021/ja208844j
Hamajima, 2016, Pressure adaptation of 3-isopropylmalate dehydrogenase from an extemely piezophilic bacterium is attributed to a single amino acid substitution, Extremophiles, 20, 177, 10.1007/s00792-016-0811-4
Huang, Q., Q.A. Do, J.M. Rodgers, R.J. Hemley, and T. Ichiye. Quasi-harmonic analysis of the energy landscapes of dihydrofolate reductase from piezophiles and mesophiles. unpublished. DOI: 10.1002/jcc.24737.
Schnell, 2004, Structure, dynamics, and catalytic function of dihydrofolate reductase, Annu. Rev. Biophys. Biomol. Struc., 33, 119, 10.1146/annurev.biophys.33.110502.133613
