The AQP2 water channel: Effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats

The Journal of Membrane Biology - Tập 143 Số 3 - Trang 165-175 - 1995
Ivan Sabolić1, Toshiya Katsura1, Jean‐Marc Verbavatz1, Dennis Brown1
1Renal Unit and Department of Pathology, Massachusetts General Hospital, 149 13th Street, 02129, Charlestown, MA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achler, C., Filmer, D., Merte, C., Drenckhahn, D. 1989. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J. Cell Biol. 109:179–189

Biber, J., Steiger, B., Haase, W., Murer, H. 1981. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim. Biophys. Acta 647:169–176

Brown, D. 1991. Structural-functional features of vasopressin-induced water flow in the kidney collecting duct. Sem. Nephrol. 11:478–501

Brown, D., Sabolić, L, Gluck, S. 1991. Colchicine-induced redistribution of proton pumps in the proximal tubule. Kidney Int. 40(Suppl. 33):S79-S83

Busson-Mabillot, S., Chambut-Guerin, A-M., Ovtracht, L., Muller, P., Rossignol, B. 1982. Microtubules and protein secretion in rat lachrymal glands: localization of short-term effects of colchicine on the secretory process. J. Cell Biol. 95:105–117

De Almeida, J.B., Stow, J. 1991. Disruption of microtubules alters polarity of basement membrane proteoglycan secretion in epithelial cells. Am. J. Physiol. 260:C691-C700

Deen, P.M.T., Verdijk, M.A.J., Knoers, N.V.A.M., Wieringa, B., Monnens, L.A.H., van Os, C.H., van Oost, B.A. 1994. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

Dousa, T.P., Barnes, L.D. 1974. Effects of colchicine and vinblastine on the cellular action of vasopressin in the mammalian kidney. A possible role of microtubules. J. Clin. Invest. 54:252–262

Dousa, T.P., Valtin, H. 1976. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10:46–63

Dratwa, M., Tisher, C.C. 1979. Effect of hypertonicity and colchicine on intramembranous particle aggregation in toad bladder. Cell Tissue Res. 196:263–269

Ercolani, L., Schultz, W.E. 1983. Metabolic and morphologic effects of colchicine on human T lymphocyte expression of FcM and FcG receptors. Cell. Immunol. 77:222–232

Fejes-Toth, G., Naray Fejes-Toth, A. 1992. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc. Natl. Acad. Sci. USA 89:5487–5491

Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S. 1993. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

Gutmann, E.J., Niles, J.L., McCluskey, R.T., Brown, D. 1989. Colchicine-induced redistribution of an endogenous apical membrane glycoprotein (gp 330) in kidney proximal tubule epithelium. Am. J. Physiol. 257:C397-C407

Harris, H.W., Jr., Strange, K., Zeidel, M.L. 1991. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J. Clin. Invest. 88:1–8

Harris, H.W., Jr., Zeidel, M.L., Jo, I., Hammond, T.G. 1994. Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J. Biol. Chem. 269:11993–12000

Hasegawa, H., Watanabe, K., Nakamura, T., Nagura, H. 1987. Immunocytochemical localization of alkaline phosphatase in absorptive cells of rat small intestine after colchicine treatment. Cell Tissue Res. 250:521–529

Horster, M.F., Zink, H. 1982. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 22:360–365

Ishibashi, K. Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., Yamaguchi, Y., Gojobori, T., Marumo, F. 1994. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. USA 91:6269–6273

Kachadorian, W.A., Ellis, S.J., Muller, J. 1979. Possible roles for microtubules and microfilaments and ADH action on toad urinary bladder. Am. J. Physiol. 236:F14-F20

Lencer, W.I., Brown, D., Ausiello, D.A., Verkman, A.S. 1990. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuresis. Am. J. Physiol. 259:C290-C932

Malaisse-Lagae, F., Amherdt, M., Ravazzola, M., Sener, A., Hutton, J.C., Orci, L., Malaisse, W.J. 1979. Role of microtubules in the synthesis, conversion and release of proinsulin. A biochemical and autoradiographic study in rat islets. J. Clin. Invest. 63:1284–1296

McLean, I. W., Nakane, P.F. 1974. Periodate-lysine paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J. Histochem. Cytochem. 22:1077–1083

Nielsen, S., DiGiovanni, S.R., Christensen, E.I., Knepper, M.A., Harris, H.W. 1993a. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc. Natl. Acad. Sci. USA 90:11663–11667

Nielsen, S., Smith, B.L., Christensen, E.I., Agre, P. 1993b. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279

Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., Agre, P. 1993c. CHIP28 water channels are localized in constitutively water permeable segments of the nephron. J. Cell Biol. 120:371–383

Ojakian, G.K., Schwimmer, R. 1988. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J. Cell Biol. 107:2377–2387

Orci, L., Le Marchand, Y., Singh, A., Assimacopoulos-Jeannet, F., Rouiller, C., Jeanreneaud, B. 1973. Role of microtubules in lipoprotein secretion by the liver. Nature 244:30–32

Patzelt, C., Brown, D., Jeanrenaud, B. 1977. Inhibitory effect of colchicine on amylase secretion by rat parotid glands. Possible localization in the Golgi area. J. Cell Biol. 73:578–593

Pavelka, M., Ellinger, A., Gangl, A. 1983. Effect of colchicine on rat small intestinal adsorptive cells I. Formation of basolateral microvillus borders. J. Ultrastruct. Res. 85:249–259

Phillips, M.E., Taylor, A. 1989. Effect of nocodazole on the water permeability response to vasopressin in rabbit collecting tubules in vitro. J. Physiol. 411:529–544

Preston, G.M., Agre, P. 1991. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. 88:11110–11114

Rajerison, R.M., Butlen, D., Jard, S. 1976. Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol. Cell. Endocrinol. 4:271–285

Sabolić, I., Burckhardt, G. 1990. ATP-driven proton transport in vesicles from the kidney cortex. In: Methods Enzymol. S. Fleischer and B. Fleischer, editors. 505–520. Academic Press, New York

Sabolić, I., Valenti, G., Verbavatz, J.-M., Van Hoek, A.N., Verkman, A.S., Ausiello, D.A., Brown, D. 1992a. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. 263:C1225-C1233

Sabolić, I., Wuarin, F., Shi, L-B., Verkman, A.S., Ausiello, D.A., Gluck, S., Brown, D. 1992b. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase. J. Cell Biol. 119:111–122

Scalera, V., Huang, Y.K., Hildman, B., Murer, H. 1981. A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membr. Biochem. 4:49–64.

Schlondorff, D., Weber, H., Trizna, W., Fine, L.G. 1978. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits. Am. J. Physiol. 234:F16-F21

Slot, J.W., Geuze, H.J. 1985. A new method for preparing gold probes for multiple labeling cytochemistry. Eur. J. Cell Biol. 38:87–93

Smith, B.L., Baumgarten, R., Nielsen, S., Raben, D., Zeidel, M.L., Agre, P. 1993. Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J. Clin. Invest. 92:2035–2041

Spitzer, A., Schwartz, G.J. 1992. The kidney during development. In: Handbook of Physiology, Renal Physiology. E.E. Windhager, editors. pp. 475–544 Oxford University Press, New York

Stetson, D.L., Steinmetz, P.R. 1983. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245:C113-C120.

Valenti, G., Hugon, J.S., Bourguet, J. 1988. To what extent is micro-tubular network involved in antidiuretic response? Am. J. Physiol. 255:F1098-F1106

Valenti, G., Verbavatz, J.-M., Sabolic, I., Ausiello, A.S., Verkman, A.S., Brown, D. 1994. A CHIP28/MIP26-related protein (BLIP) in basolateral membranes of kidney collecting duct principal cells and gastric parietal cells. Am. J. Physiol. 267:C812-C820.

Van Hoek, A.N., Verkman, A.S. 1992. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267:18267–18269

van Zeijl, M.J., Matlin, K.S. 1990. Microtubule perturbation inhibits intracellular transport of an apical membrane glycoprotein in a substrate-dependent manner in polarized Madin-Darby canine kidney epithelial cells. Cell Regul. 1:921–936

Verbavatz, J.-M., Van Hoek, A.N., Ma, T., Sabolic, I., Valenti, G., Ellisman, M.H., Ausiello, D.A., Verkman, A.S., Brown, D. 1994. A 28 kD sarcolemmal antigen in kidney principal cell basolateral membranes: relationship to orthogonal arrays and MIP26. J. Cell Sci. 107:1083–1094

Verkman, A.S. 1992. Water channels in cell membranes. Ann. Rev. Physiol. 54:97–106

Wade, J.B., Stetson, D.L., Lewis, S.A. 1981. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372:106–117