MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles

BMC Bioinformatics - Tập 17 - Trang 1-12 - 2016
Grace Tzun-Wen Shaw1, Yueh-Yang Pao1, Daryi Wang1
1Biodiversity Research Center, Academia Sinica, Taipei, Taiwan

Tóm tắt

The complexity and dynamics of microbial communities are major factors in the ecology of a system. With the NGS technique, metagenomics data provides a new way to explore microbial interactions. Lotka-Volterra models, which have been widely used to infer animal interactions in dynamic systems, have recently been applied to the analysis of metagenomic data. In this paper, we present the Lotka-Volterra model based tool, the Metagenomic Microbial Interacticon Simulator (MetaMIS), which is designed to analyze the time series data of microbial community profiles. MetaMIS first infers underlying microbial interactions from abundance tables for operational taxonomic units (OTUs) and then interprets interaction networks using the Lotka-Volterra model. We also embed a Bray-Curtis dissimilarity method in MetaMIS in order to evaluate the similarity to biological reality. MetaMIS is designed to tolerate a high level of missing data, and can estimate interaction information without the influence of rare microbes. For each interaction network, MetaMIS systematically examines interaction patterns (such as mutualism or competition) and refines the biotic role within microbes. As a case study, we collect a human male fecal microbiome and show that Micrococcaceae, a relatively low abundance OTU, is highly connected with 13 dominant OTUs and seems to play a critical role. MetaMIS is able to organize multiple interaction networks into a consensus network for comparative studies; thus we as a case study have also identified a consensus interaction network between female and male fecal microbiomes. MetaMIS provides an efficient and user-friendly platform that may reveal new insights into metagenomics data. MetaMIS is freely available at: https://sourceforge.net/projects/metamis/ .

Tài liệu tham khảo

Gilbert JA, Meyer F, Jansson J, Gordon J, Pace N, Tiedje J, Ley R, Fierer N, Field D, Kyrpides N, et al. The earth microbiome project: meeting report of the “1 EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6 2010. Stand Genomic Sci. 2010;3(3):249–53. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. Danovaro R, Corinaldesi C, Dell’anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35(6):993–1034. Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538–50. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA. Metabolic modeling of a mutualistic microbial community. Mol Syst Biol. 2007;3:92. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. Fisher CK, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One. 2014;9(7):e102451. Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219. Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11(5):e1004226. Tsai KN, Lin SH, Liu WC, Wang D. Inferring microbial interaction network from microbiome data using RMN algorithm. BMC Syst Biol. 2015;9:54. Jansen W. A permanence theorem for replicator and Lotka-Volterra systems. J Math Biol. 1987;25(4):411–22. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Science. 2015;350(6261):663–6. Dam P, Fonseca LL, Konstantinidis KT, Voit EO. Dynamic models of the complex microbial metapopulation of lake mendota. NPJ Syst Biol Appl. 2016;2:16007. Marino S, Baxter NT, Huffnagle GB, Petrosino JF, Schloss PD. Mathematical modeling of primary succession of murine intestinal microbiota. Proc Natl Acad Sci U S A. 2014;111(1):439–44. Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou AS, Helias A, Irlinger F. Microbial interactions within a cheese microbial community. Appl Environ Microbiol. 2008;74(1):172–81. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;8:361–2. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50. Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A. 2013;110(31):12804–9. Edelstein-Keshet L. Mathematical models in biology, vol. 46: Siam; 1988. Selwyn S, Marsh P, Sethna TN. In vitro and in vivo studies on antibiotics from skin micrococcaceae. Springer: Penicillins and Cephalosporins; 1976. p. 391–6. Gonzalez B, Dıez V. The effect of nitrite and starter culture on microbiological quality of “chorizo”—a Spanish dry cured sausage. Meat Sci. 2002;60(3):295–8. Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, Bushman FD, Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3(2):148–58. Ogle J, Finck A, Aho E. Production of Antimicrobial Substances by Nonpathogenic Neisseria Species. FASEB J. 2015;29(1 Supplement):575–7. Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis. 2014;209 suppl 3:S100–6. Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med. 2009;6(12):e1000199. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, Antonopoulos D, Umesaki Y, Chervonsky AV. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12. Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80(24):7551–60. Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW. CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome. 2014;2:11. Hofbauer J, Sigmund K. Evolutionary games and population dynamics. UK: Cambridge university press; 1998. Wold H. Partial least squares, Encyclopedia of statistical sciences. 1985. Lance G, Williams W. Computer programs for hierarchical polythetic classification (“similarity analyses”). Comput J. 1966;9(1):60–4.