Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

Salik Hussain1, Leen C.J. Thomassen2, Ioana Ferecatu1, Marie-Caroline Borot1, Karine Andréau1, Johan A. Martens2, J Fleury3, Armelle Baeza‐Squiban1, Francelyne Marano1, Sonja Boland1
1Unit of Functional and Adaptive Biology (BFA) CNRS EAC 4413, Laboratory of Molecular and Cellular Responses to Xenobiotics, Université Paris Diderot - Paris 7, 75205, Paris, France
2Center for Surface Chemistry & Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001, Heverlee, Belgium
3Unité 955, INSERM, 94000, Créteil, France

Tóm tắt

Abstract Background

Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways.

Results

Detailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2) production was only involved in apoptosis induction by CB NPs.

Conclusions

Both CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis), the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs.

Từ khóa


Tài liệu tham khảo

Warheit DB, Sayes CM, Reed KL, Swain KA: Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 2008, 120: 35–42. 10.1016/j.pharmthera.2008.07.001

Frampton MW, Utell MJ, Zareba W, Oberdorster G, Cox C, Huang LS, Morrow PE, Lee FE, Chalupa D, Frasier LM, Speers DM, Stewart J: Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 2004, 1–47.

Oberdorster G: Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001, 74: 1–8. 10.1007/s004200000185

Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B: Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001, 164: 1665–1668.

Simeonova PP, Erdely A: Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers. Inhal Toxicol 2009, 21(Suppl 1):68–73. 10.1080/08958370902942566

Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J, Yoshimura T, Iigo M, Fujii J, Okada F: Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells. Am J Pathol 2009.

Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40: 4346–4352. 10.1021/es060589n

Xia T, Kovochich M, Nel A: The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med 2006, 5: 817–836.

Mueller NC, Nowack B: Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008, 42: 4447–4453. 10.1021/es7029637

Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR: Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 2009, 43: 4227–4233. 10.1021/es8032549

Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311: 622–627. 10.1126/science.1114397

Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002, 9: 459–470. 10.1016/S1097-2765(02)00482-3

Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF: Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000, 106: 1311–1319. 10.1172/JCI10259

Melis M, Siena L, Pace E, Gjomarkaj M, Profita M, Pirazzoli A, Todaro M, Stassi G, Bonsignore G, Vignola AM: Fluticasone induces apoptosis in peripheral T-lymphocytes: a comparison between asthmatic and normal subjects. Eur Respir J 2002, 19: 257–266. 10.1183/09031936.02.00239202

Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997, 22: 269–285. 10.1016/S0891-5849(96)00275-4

Kannan K, Jain SK: Oxidative stress and apoptosis. Pathophysiology 2000, 7: 153–163. 10.1016/S0928-4680(00)00053-5

Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G: Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995, 182: 367–377. 10.1084/jem.182.2.367

Baumgartner HK, Gerasimenko JV, Thorne C, Ashurst LH, Barrow SL, Chvanov MA, Gillies S, Criddle DN, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV: Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins. Am J Physiol Gastrointest Liver Physiol 2007, 293: G296-G307. 10.1152/ajpgi.00103.2007

Gurr JR, Wang AS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005, 213: 66–73. 10.1016/j.tox.2005.05.007

Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ: Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007, 41: 4158–4163. 10.1021/es062629t

Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F: Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 2009, 260: 142–149. 10.1016/j.tox.2009.04.001

Sydlik U, Bierhals K, Soufi M, Abel J, Schins RP, Unfried K: Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am J Physiol Lung Cell Mol Physiol 2006, 291: L725-L733. 10.1152/ajplung.00131.2006

Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W: Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3: 1941–1949. 10.1002/smll.200700378

Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5: 2067–2076. 10.1002/smll.200900466

Li N, Hao M, Phalen RF, Hinds WC, Nel AE: Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 2003, 109: 250–265. 10.1016/j.clim.2003.08.006

Phalen RF, Oldham MJ, Nel AE: Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci 2006, 92: 126–132. 10.1093/toxsci/kfj182

Thomassen LC, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CE, Martens JA: Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 2010, 26: 328–335. 10.1021/la902050k

Brinker CJ, Scherer GW: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. 2nd edition. London: Academic Press; 1990.

Soto K, Garza KM, Murr LE: Cytotoxic effects of aggregated nanomaterials. Acta Biomater 2007, 3: 351–358. 10.1016/j.actbio.2006.11.004

Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26: 239–257.

Song Y, Li X, Du X: Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 2009, 34: 559–567. 10.1183/09031936.00178308

Bortner CD, Cidlowski JA: Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 2002, 9: 1307–1310. 10.1038/sj.cdd.4401126

Park EJ, Choi J, Park YK, Park K: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008, 245: 90–100. 10.1016/j.tox.2007.12.022

Niazi S, Robertson NM, Agrawal A, Hastie AT, Peters SP, Zangrilli J: Overlap between death receptor and non-receptor-mediated mechanisms during apoptosis in human eosinophils. Chest 2003, 123: 345S. 10.1378/chest.123.3_suppl.345S

Sohn D, Schulze-Osthoff K, Janicke RU: Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J Biol Chem 2005, 280: 5267–5273. 10.1074/jbc.M408585200

Izeradjene K, Douglas L, Tillman DM, Delaney AB, Houghton JA: Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res 2005, 65: 7436–7445. 10.1158/0008-5472.CAN-04-2628

Thornberry NA, Lazebnik Y: Caspases: enemies within. Science 1998, 281: 1312–1316. 10.1126/science.281.5381.1312

Hampton MB, Orrenius S: Redox regulation of apoptotic cell death in the immune system. Toxicol Lett 1998, 102–103: 355–358. 10.1016/S0378-4274(98)00333-6

Beckman JS, Minor RL Jr, Freeman BA: Augmentation of antioxidant enzymes in vascular endothelium. J Free Radic Biol Med 1986, 2: 359–365. 10.1016/S0748-5514(86)80036-8

Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death. Oncogene 2008, 27: 6434–6451. 10.1038/onc.2008.310

Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008, 9: 231–241. 10.1038/nrm2312

Youle RJ, Strasser A: The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008, 9: 47–59. 10.1038/nrm2308

Broker LE, Kruyt FA, Giaccone G: Cell death independent of caspases: a review. Clin Cancer Res 2005, 11: 3155–3162. 10.1158/1078-0432.CCR-04-2223

Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FA, Giaccone G: Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 2004, 64: 27–30. 10.1158/0008-5472.CAN-03-3060

Guicciardi ME, Leist M, Gores GJ: Lysosomes in cell death. Oncogene 2004, 23: 2881–2890. 10.1038/sj.onc.1207512

Leist M, Jaattela M: Triggering of apoptosis by cathepsins. Cell Death Differ 2001, 8: 324–326. 10.1038/sj.cdd.4400859

Zhao M, Eaton JW, Brunk UT: Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett 2001, 509: 405–412. 10.1016/S0014-5793(01)03185-4

Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G: Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003, 197: 1323–1334. 10.1084/jem.20021952

Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ: Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000, 106: 1127–1137. 10.1172/JCI9914

Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard AK: Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 2004, 80: 34–48. 10.1093/toxsci/kfh121

Dare E, Li W, Zhivotovsky B, Yuan X, Ceccatelli S: Methylmercury and H(2)O(2) provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radic Biol Med 2001, 30: 1347–1356. 10.1016/S0891-5849(01)00526-3

Terman A, Kurz T, Gustafsson B, Brunk UT: Lysosomal labilization. IUBMB Life 2006, 58: 531–539. 10.1080/15216540600904885

Fenoglio I, Greco G, Livraghi S, Fubini B: Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry 2009, 15: 4614–4621. 10.1002/chem.200802542

Liu W, Kato M, Akhand AA, Hayakawa A, Suzuki H, Miyata T, Kurokawa K, Hotta Y, Ishikawa N, Nakashima I: 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci 2000, 113: 635–641.

L'azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Cambar J, Brochard P, Ohayon-Court : In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 2008, 5: 22. 10.1186/1743-8977-5-22

Setyan A, Sauvain JJ, Rossi MJ: The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles. Phys Chem Chem Phys 2009, 11: 6205–6217. 10.1039/b902509j

Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC: CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 1994, 10: 38–47.

Boisvieux-Ulrich E, Sourdeval M, Marano F: CD437, a synthetic retinoid, induces apoptosis in human respiratory epithelial cells via caspase-independent mitochondrial and caspase-8-dependent pathways both up-regulated by JNK signaling pathway. Exp Cell Res 2005, 307: 76–90. 10.1016/j.yexcr.2005.02.005

Merendino AM, Bucchieri F, Gagliardo R, Daryadel A, Pompeo F, Chiappara G, Santagata R, Bellia V, David S, Farina F, Davies DE, Simon HU, Vignola AM: CD40 ligation protects bronchial epithelium against oxidant-induced caspase-independent cell death. Am J Respir Cell Mol Biol 2006, 35: 155–164. 10.1165/rcmb.2005-0433OC

Sourdeval M, Lemaire C, Deniaud A, Taysse L, Daulon S, Breton P, Brenner C, Boisvieux-Ulrich E, Marano F: Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis 2006, 11: 1545–1559. 10.1007/s10495-006-8764-1

Sourdeval M, Lemaire C, Brenner C, Boisvieux-Ulrich E, Marano F: Mechanisms of doxycycline-induced cytotoxicity on human bronchial epithelial cells. Front Biosci 2006, 11: 3036–3048. 10.2741/2031

Morris RE, Ciraolo GM, Cohen DA, Bubel HC: In situ fixation of cultured mouse peritoneal exudate cells: comparison of fixation methods. In Vitro 1980, 16: 136–146. 10.1007/BF02831504

Lemaire C, Andreau K, Souvannavong V, Adam A: Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 1998, 425: 266–270. 10.1016/S0014-5793(98)00252-X

Rothe G, Valet G: Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol 1990, 47: 440–448.

Naguib YM: Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 2000, 48: 1150–1154. 10.1021/jf991106k

Rundquist I, Olsson M, Brunk U: Cytofluorometric quantitation of acridine orange uptake by cultured cells. Acta Pathol Microbiol Immunol Scand A 1984, 92: 303–309.