Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T

Neuroradiology - Tập 49 - Trang 849-863 - 2007
Christophe Habas1, Emmanuel Alain Cabanis1
1Service de NeuroImagerie, Hôpital des Quinze-Vingts, UPMC Paris 6, Paris, France

Tóm tắt

The aims of this study were: (1) to test whether higher spatial resolution diffusion tensor images and a higher field strength (3 T) enable a more accurate delineation of the anatomical tract within the brainstem, and, in particular, (2) to try to distinguish the different components of the corticopontocerebellar paths in terms of their cortical origins. The main tracts of the brainstem of four volunteers were studied at 3 T using a probabilistic diffusion tensor imaging (DTI) axonal tracking. The resulting tractograms enabled anatomical well-delineated structures to be identified on the diffusion tensor coloured images. We tracked corticopontine, corticospinal, central tegmental, inferior and superior cerebellopeduncular, transverse, medial lemniscal and, possibly, longitudinal medial fibres. Moreover, DTI tracking allowed a broad delineation of the corticopontocerebellar paths. Diffusion tensor coloured images allow a rapid and reliable access to the white matter broad parcellation of the brainstem and of the cerebellum, which can be completed by fibre tracking. However, a more accurate and exhaustive depiction of the anatomical connectivity within the brainstem requires the application of more sophisticated techniques and tractography algorithms, such as diffusion spectrum imaging.

Tài liệu tham khảo

Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S (2003) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87 Golay X, Jiang H, van Zijl PC, Mori S (2002) High-resolution isotropic 3D diffusion tensor imaging of the human brain. Magn Reson Med 47:837–843 Widjaja E, Blaser S, Raybaud C (2006) Diffusion tensor imaging of midline posterior fossa malformations. Pediatr Radiol 36:510–517 Salamon N, Sicotte N, Alger J, Shattuck D, Perlman S, Sinha U, Schultze-Haakh H, Salamon N (2005) Analysis of the brain-stem white-matter tracts with diffusion tensor imaging. Neuroradiology 47:895–902 Nagae-Poetscher LM, Jiang H, Wakana S, Golay X, Zilj PCM, Mori S (2004) High-resolution diffusion tensor imaging of the brain stem at 3T. AJNR Am J Neuroradiol 25:1325–1330 Habas C, Cabanis EA (2006) Cortical projections to the human red nucleus: a diffusion tensor tractography study with 1.5-T machine. Neuroradiology 48:755–762 Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088 Nieuwenhuys R, Voogt J, van Huijzen C (eds) (1988) The human central nervous system. A synopsis and atlas, 3rd revised edn. Springer, Berlin Heidelberg New York Haines DH (2000) Neuroanatomy. An atlas of structures, sections and systems, 5th edn. Lippincott Williams & Wilkins, New York Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic Press, San Diego Tuch DS (2002) Diffusion MRI of complex tissue structure. PhD thesis, Harvard-MIT Tuch SD (2004) Q-ball imaging. Magn Reson Med 52:577–582 Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185 Jansons KM, Alexander DC (2003) Persistent Angular Structure: new insights from diffusion MRI data. Dummy version. Inf Process Med Imaging 18:672–683 Schmahmann JD, Pandya DN, Wang R, Dai G, d’Arcueil HE, de Crespignyt AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653 Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155 Aron AR, Behrens TE, Smith S, Franck MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27:6743–6752 Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333 Schmahmann JD, Pandya DN (1997) Anatomic organization and functional implications of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458 Brodal P (1978) The corticopontine projection in the rhesus monkey: origin and principles of organization. Brain 101:29–36 Brodal P (1979) The pontocerebellar projection in rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4:193–208 Massion J (1967) The mammalian red nucleus. Physiol Rev 47:383–436 Schmahmann JD, Rosene DL, Pandya DN (2004) Ataxia after pontine stroke: insights from ponto-cerebellar fibers in monkey. Annals of Neurology 55:585–589