Solutions of elliptic equations with critical Sobolev exponent in dimension three

Myriam Comte1
1Laboratoire d' Analyse Numérique, Tour 55-65, Université Pierre et Marie Curie, 4, place Jussieu, 75262 Paris Cedex 05, France

Tài liệu tham khảo

Ambrosetti, 1986, A note on the problem −Δu=λu+u|u|2∗−2, Manuscripta math., 54, 373, 10.1007/BF01168482 Atkinson, 1986, Emden-Fowler equations involving critical exponents, Nonlinear Analysis, 10, 755, 10.1016/0362-546X(86)90036-2 Atkinson, 1988, Large solutions of elliptic equations involving critical exponents, Asymptotic Analysis, 1, 139, 10.3233/ASY-1988-1204 Berger, 1971, Le spectre d'une variété riemannienne, 194 Brezis, 1983, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Communs Pure appl. Math., 36, 437, 10.1002/cpa.3160360405 Capozzi, 1985, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. I.H.P., 2, 463 Elbert, 1977, Concavity of the zeros of Bessel functions, Stud. Sci. Math. Hungar., 12, 81 Elbert, 1984, On the square of the zeros of Bessel functions, SIAM J. math. Analysis, 15, 206, 10.1137/0515017 Gidas, 1979, Symmetry and related properties via the maximum principle, Communs math. Phys., 68, 209, 10.1007/BF01221125 Pohozaev, 1965, Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl., 6, 1408 Serrin, 1971, A symmetry problem in potential theory, Archs ration. Mech. Analysis, 43, 304, 10.1007/BF00250468 Sommerfeld, 1964 WANG S., The existence of positive solution of semilinear elliptic equations with limiting Sobolev exponent (to appear). Watson, 1944