Effect of the nonlocal nature of the electron energy spectrum on the dissociation of oxygen molecules in a discharge

Plasma Physics Reports - Tập 30 - Trang 542-548 - 2004
K. S. Klopovskiy1, D. V. Lopaev1, O. V. Proshina1, A. T. Rakhimov1, T. V. Rakhimova1
1Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob’evy gory, Moscow, Russia

Tóm tắt

The effect of the nonlocal nature of the electron distribution function on the dissociation rate of oxygen molecules in a dc glow discharge is studied. The concentration of oxygen atoms and the probability of their loss at the discharge tube wall are measured as functions of the discharge parameters by means of the timeresolved actinometric method involving argon atoms. An analysis of the measurement data in terms of both a discharge model in which the effect of the nonlocal nature of the electron energy spectrum is taken into account and a model in which this effect is ignored makes it possible to thoroughly investigate the balance of oxygen atoms in the discharge. The production rate of O(3 P) atoms and their concentration in the plasma are calculated with allowance for the nonlocal nature of the electron energy distribution function. The calculated values agree well with the experimental data and differ substantially from those obtained using a spatially homogeneous distribution function.

Tài liệu tham khảo

U. Kortshagen, Phys. Rev. E 49, 4369 (1994). V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci. 23, 503 (1995). U. Kortshagen, I. Pukrovski, and L. D. Tsendin, Phys. Rev. E 51, 6063 (1995). U. Kortshagen, G. J. Parker, and J. E. Lawler, Phys. Rev. E 54, 6746 (1996). C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 102 (1991). Electron Kinetics and Applications of Glow Discharges, NATO ASI Ser., Ser. B 367 (1998). V. A. Feoktistov, V. V. Ivanov, A. M. Popov, et al., J. Phys. D 30, 423 (1997). V. A. Feoktistov, D. V. Lopaev, K. S. Klopovsky, et al., J. Nucl. Mater. 200, 309 (1993). V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., IEEE Trans. Plasma Sci. 27, 1279 (1999). V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., Pis'ma Zh. Éksp. Teor. Fiz. 63, 511 (1996) [JETP Lett. 63, 537 (1996)]. V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., Fiz. Plazmy 26, 1038 (2000) [Plasma Phys. Rep. 26, 972 (2000)]. V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., Fiz. Plazmy 26, 1046 (2000) [Plasma Phys. Rep. 26, 980 (2000)]. D. Pagnon, J. Amorim, J. Nahorny, et al., J. Phys. D 28, 1856 (1995). G. Gousset, C. M. Ferreira, M. Pinheiro, et al., J. Phys. D 24, 290 (1991). M. Touzeau, M. Vialle, A. Zellagui, et al., J. Phys. D 24, 41 (1991). V. V. Ivanov, K. S. Klopovskiy, D. V. Lopaev, et al., Preprint No. 2000-16/620 (Institute of Nuclear Physics, Moscow State University, Moscow, 2000). R. N. Franklin, P. G. Daniels, and J. Snell, J. Phys. D 26, 1638 (1993). V. I. Kolobov and D. J. Economou, Appl. Phys. Lett. 72, 656 (1998).