Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Knowles, J., Corne, D., Reynolds, A.: Noisy multiobjective optimization on a budget of 250 evaluations. In: Ehrgott, M., et al. (eds.) Lecture Notes in Computer Science, vol. 5467, pp. 36–50. Springer, New York (2009)
Loh, W.-L., Lam, T.-K.: Estimating structured correlation matrices in smooth Gaussian random field models. Ann. Stat. 28, 880–904 (2000)
Mockus, J.: Bayesian Approach to Global Optimization. Kluwer Academic Publishers, Dordrecht (1988)
Pepelyshev, A.: Fixed-domain asymtotics of the maximum likelihood estiomator and the gaussian process approach for deterministic models. Stat. Methodol. 8(4), 356–362 (2011)
Sacks, J., Schiller, S.B., Welch, W.J.: Designs for computer experiments. Technometrics 31(1), 41–47 (1989)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)
Wanting, X., Stein, M.L.: Maximum likelihood estimation for smooth Gaussian random field model. SIAM/ASA Uncertain. Quantif. 5, 138–175 (2017)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)
Žilinskas, A.: Optimization of one-dimensional multimodal functions, Algorithm AS133. J. R. Stat. Soc. Ser. C 23, 367–385 (1978)
Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)
Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)