Graphene nanosheet/silicone composite with enhanced thermal conductivity and its application in heat dissipation of high-power light-emitting diodes
Tài liệu tham khảo
Ahn, 2014, Effect of LED lighting on the cooling and heating loads in office buildings, Appl. Energy, 113, 1484, 10.1016/j.apenergy.2013.08.050
Jung, 2015, Development of a heat dissipating LED headlamp with silicone lens to replace halogen bulbs in used cars, Appl. Therm. Eng., 86, 143, 10.1016/j.applthermaleng.2015.04.044
Jang, 2014, The orientation effect for cylindrical heat sinks with application to LED light bulbs, Int. J. Heat. Mass Transf., 71, 496, 10.1016/j.ijheatmasstransfer.2013.12.037
Wang, 2014, Thermal design and simulation of automotive headlamps using white LEDs, Microelectron. J., 45, 249, 10.1016/j.mejo.2013.11.011
Maaspuro, 2013, Thermal analysis of LED spot lighting device operating in external natural or forced heat convection, Microelectron. Reliab., 53, 428, 10.1016/j.microrel.2012.10.004
Due, 2013, Reliability of thermal interface materials: a review, Appl. Therm. Eng., 50, 455, 10.1016/j.applthermaleng.2012.06.013
Montgomery, 1947, Viscosity and thermal conductivity of air and diffusivity of water vapor in air, J. Meteorol., 4, 193, 10.1175/1520-0469(1947)004<0193:VATCOA>2.0.CO;2
Sim, 2005, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim. Acta, 430, 155, 10.1016/j.tca.2004.12.024
Shahil, 2012, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials, Solid State Commun., 152, 1331, 10.1016/j.ssc.2012.04.034
Pop, 2006, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6, 96, 10.1021/nl052145f
Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272
Park, 2009, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58
Bie, 2015, Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings, Nat. Commun., 6, 7593, 10.1038/ncomms8593
Varykhalov, 2015, Tunable Fermi level and hedgehog spin texture in gapped graphene, Nat. Commun., 6, 7610, 10.1038/ncomms8610
Zhou, 2015, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nat. Commun., 6, 7760, 10.1038/ncomms8760
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753
Guo, 2011, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 40, 2644, 10.1039/c0cs00079e
Green, 2009, Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett., 9, 4031, 10.1021/nl902200b
Lotya, 2009, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 131, 3611, 10.1021/ja807449u
Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719
Li, 2008, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538, 10.1038/nnano.2008.210
Amiri, 2015, Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization, Sci. Rep., 5, 17503, 10.1038/srep17503
Murugan, 2009, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage, Chem. Mater., 21, 5004, 10.1021/cm902413c
Lin, 2014, A thermally conductive composite with a silica gel matrix and carbon-encapsulated copper nanoparticles as filler, J. Electron. Mater., 43, 2759, 10.1007/s11664-014-3159-5
Stankovich, 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558, 10.1016/j.carbon.2007.02.034
Ahmad, 2015, Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina, Mater. Des., 88, 1234, 10.1016/j.matdes.2015.09.125
Baby, 2010, Investigation of thermal and electrical conductivity of graphene based nanofluids, J. Appl. Phys., 108, 124308, 10.1063/1.3516289
Wang, 2009, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon, 47, 3242, 10.1016/j.carbon.2009.07.040
Langford, 1978, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102, 10.1107/S0021889878012844
Kaniyoor, 2010, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide, J. Mater. Chem., 20, 8467, 10.1039/c0jm01876g
Ashori, 2016, Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating, J. Ind. Eng. Chem., 6
Zhang, 2014, Thermal conductivity and thermal stability enhancement of ethylene propylene diene methylene with carbon nanotube, J. Reinf. Plast. Compos., 33, 767, 10.1177/0731684413515066
Kim, 2006, Fabrication of aligned carbon nanotube-filled rubber composite, Scr. Mater., 54, 31, 10.1016/j.scriptamat.2005.09.014
Nika, 2009, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413
Savin, 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 2821, 10.1103/PhysRevB.82.195422
Yu, 2007, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s
Ding, 2014, Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process, Carbon, 66, 576, 10.1016/j.carbon.2013.09.041