Graphene nanosheet/silicone composite with enhanced thermal conductivity and its application in heat dissipation of high-power light-emitting diodes

Current Applied Physics - Tập 16 - Trang 1695-1702 - 2016
Haiyan Zhang1,2, Yingxi Lin1, Danfeng Zhang1, Wenguang Wang1,2, Yuxiong Xing1, Jin Lin1, Haoqun Hong1, Chunhui Li1
1School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
2Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou 510006, China

Tài liệu tham khảo

Ahn, 2014, Effect of LED lighting on the cooling and heating loads in office buildings, Appl. Energy, 113, 1484, 10.1016/j.apenergy.2013.08.050 Jung, 2015, Development of a heat dissipating LED headlamp with silicone lens to replace halogen bulbs in used cars, Appl. Therm. Eng., 86, 143, 10.1016/j.applthermaleng.2015.04.044 Jang, 2014, The orientation effect for cylindrical heat sinks with application to LED light bulbs, Int. J. Heat. Mass Transf., 71, 496, 10.1016/j.ijheatmasstransfer.2013.12.037 Wang, 2014, Thermal design and simulation of automotive headlamps using white LEDs, Microelectron. J., 45, 249, 10.1016/j.mejo.2013.11.011 Maaspuro, 2013, Thermal analysis of LED spot lighting device operating in external natural or forced heat convection, Microelectron. Reliab., 53, 428, 10.1016/j.microrel.2012.10.004 Due, 2013, Reliability of thermal interface materials: a review, Appl. Therm. Eng., 50, 455, 10.1016/j.applthermaleng.2012.06.013 Montgomery, 1947, Viscosity and thermal conductivity of air and diffusivity of water vapor in air, J. Meteorol., 4, 193, 10.1175/1520-0469(1947)004<0193:VATCOA>2.0.CO;2 Sim, 2005, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim. Acta, 430, 155, 10.1016/j.tca.2004.12.024 Shahil, 2012, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials, Solid State Commun., 152, 1331, 10.1016/j.ssc.2012.04.034 Pop, 2006, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6, 96, 10.1021/nl052145f Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272 Park, 2009, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58 Bie, 2015, Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings, Nat. Commun., 6, 7593, 10.1038/ncomms8593 Varykhalov, 2015, Tunable Fermi level and hedgehog spin texture in gapped graphene, Nat. Commun., 6, 7610, 10.1038/ncomms8610 Zhou, 2015, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nat. Commun., 6, 7760, 10.1038/ncomms8760 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064 Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753 Guo, 2011, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 40, 2644, 10.1039/c0cs00079e Green, 2009, Solution phase production of graphene with controlled thickness via density differentiation, Nano Lett., 9, 4031, 10.1021/nl902200b Lotya, 2009, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 131, 3611, 10.1021/ja807449u Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719 Li, 2008, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538, 10.1038/nnano.2008.210 Amiri, 2015, Microwave-assisted synthesis of highly-crumpled, few-layered graphene and nitrogen-doped graphene for use as high-performance electrodes in capacitive deionization, Sci. Rep., 5, 17503, 10.1038/srep17503 Murugan, 2009, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage, Chem. Mater., 21, 5004, 10.1021/cm902413c Lin, 2014, A thermally conductive composite with a silica gel matrix and carbon-encapsulated copper nanoparticles as filler, J. Electron. Mater., 43, 2759, 10.1007/s11664-014-3159-5 Stankovich, 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558, 10.1016/j.carbon.2007.02.034 Ahmad, 2015, Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina, Mater. Des., 88, 1234, 10.1016/j.matdes.2015.09.125 Baby, 2010, Investigation of thermal and electrical conductivity of graphene based nanofluids, J. Appl. Phys., 108, 124308, 10.1063/1.3516289 Wang, 2009, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon, 47, 3242, 10.1016/j.carbon.2009.07.040 Langford, 1978, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102, 10.1107/S0021889878012844 Kaniyoor, 2010, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide, J. Mater. Chem., 20, 8467, 10.1039/c0jm01876g Ashori, 2016, Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating, J. Ind. Eng. Chem., 6 Zhang, 2014, Thermal conductivity and thermal stability enhancement of ethylene propylene diene methylene with carbon nanotube, J. Reinf. Plast. Compos., 33, 767, 10.1177/0731684413515066 Kim, 2006, Fabrication of aligned carbon nanotube-filled rubber composite, Scr. Mater., 54, 31, 10.1016/j.scriptamat.2005.09.014 Nika, 2009, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413 Savin, 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 2821, 10.1103/PhysRevB.82.195422 Yu, 2007, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s Ding, 2014, Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process, Carbon, 66, 576, 10.1016/j.carbon.2013.09.041