Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses

Cell - Tập 162 - Trang 1217-1228 - 2015
Ping-Chih Ho1, Jessica Dauz Bihuniak2, Andrew N. Macintyre3, Matthew Staron1, Xiaojing Liu4, Robert Amezquita1,5, Yao-Chen Tsui1,6, Guoliang Cui1, Goran Micevic7, Jose C. Perales8, Steven H. Kleinstein5, E. Dale Abel9, Karl L. Insogna2, Stefan Feske10, Jason W. Locasale4, Marcus W. Bosenberg5,7, Jeffrey C. Rathmell3, Susan M. Kaech1
1Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
2Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
3Department of Pharmacology and Cancer Biology, Immunology, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
4Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
5Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
6Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
7Department of Dermatology, Yale University School of Medicine, New Haven, CT 06519, USA
8Biophysics Unit, Department of Physiological Sciences II, IDIBELL-University of Barcelona, Fexia Llarga s/n 08907, Spain
9Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Department of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
10Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA

Tài liệu tham khảo

Anastasiou, 2012, Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis, Nat. Chem. Biol., 8, 839, 10.1038/nchembio.1060 Baitsch, 2012, The three main stumbling blocks for anticancer T cells, Trends Immunol., 33, 364, 10.1016/j.it.2012.02.006 Blagih, 2015, The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo, Immunity, 42, 41, 10.1016/j.immuni.2014.12.030 Borge, 2003, Insulin receptor substrate 1 regulation of sarco-endoplasmic reticulum calcium ATPase 3 in insulin-secreting beta-cells, J. Biol. Chem., 278, 11359, 10.1074/jbc.M209521200 Braumüller, 2013, T-helper-1-cell cytokines drive cancer into senescence, Nature, 494, 361, 10.1038/nature11824 Callahan, 2010, Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy, Semin. Oncol., 37, 473, 10.1053/j.seminoncol.2010.09.001 Cerami, 2012, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2, 401, 10.1158/2159-8290.CD-12-0095 Cham, 2008, Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells, Eur. J. Immunol., 38, 2438, 10.1002/eji.200838289 Chang, 2013, Posttranscriptional control of T cell effector function by aerobic glycolysis, Cell, 153, 1239, 10.1016/j.cell.2013.05.016 Dankort, 2009, Braf(V600E) cooperates with Pten loss to induce metastatic melanoma, Nat. Genet., 41, 544, 10.1038/ng.356 Doedens, 2013, Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen, Nat. Immunol., 14, 1173, 10.1038/ni.2714 Feske, 2012, Ion channels and transporters in lymphocyte function and immunity, Nat. Rev. Immunol., 12, 532, 10.1038/nri3233 Finlay, 2012, PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells, J. Exp. Med., 209, 2441, 10.1084/jem.20112607 Frauwirth, 2002, The CD28 signaling pathway regulates glucose metabolism, Immunity, 16, 769, 10.1016/S1074-7613(02)00323-0 Gao, 2013, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci. Signal., 6, 10.1126/scisignal.2004088 Gubser, 2013, Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch, Nat. Immunol., 14, 1064, 10.1038/ni.2687 Gullino, 1964, The Interstitial Fluid of Solid Tumors, Cancer Res., 24, 780 Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Ho, 2011, Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis, Cell. Signal., 23, 1396, 10.1016/j.cellsig.2011.03.023 Ho, 2014, Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ, Cancer Res., 74, 3205, 10.1158/0008-5472.CAN-13-3461 Macintyre, 2014, The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function, Cell Metab., 20, 61, 10.1016/j.cmet.2014.05.004 MacIver, 2013, Metabolic regulation of T lymphocytes, Annu. Rev. Immunol., 31, 259, 10.1146/annurev-immunol-032712-095956 Maude, 2014, Chimeric antigen receptor T cells for sustained remissions in leukemia, N. Engl. J. Med., 371, 1507, 10.1056/NEJMoa1407222 Mellman, 2011, Cancer immunotherapy comes of age, Nature, 480, 480, 10.1038/nature10673 Michalek, 2011, Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets, J. Immunol., 186, 3299, 10.4049/jimmunol.1003613 Moran, 2011, T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse, J. Exp. Med., 208, 1279, 10.1084/jem.20110308 Parry, 2005, CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms, Mol. Cell. Biol., 25, 9543, 10.1128/MCB.25.21.9543-9553.2005 Pearce, 2013, Fueling immunity: insights into metabolism and lymphocyte function, Science, 342, 1242454, 10.1126/science.1242454 Qin, 2013, Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart, J. Am. Heart Assoc., 2, e000184, 10.1161/JAHA.113.000184 Safford, 2005, Egr-2 and Egr-3 are negative regulators of T cell activation, Nat. Immunol., 6, 472, 10.1038/ni1193 Schwartz, 2003, T cell anergy, Annu. Rev. Immunol., 21, 305, 10.1146/annurev.immunol.21.120601.141110 Sharov, 2006, Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: selective protein oxidation during biological aging, Biochem. J., 394, 605, 10.1042/BJ20051214 Shiao, 2011, Immune microenvironments in solid tumors: new targets for therapy, Genes Dev., 25, 2559, 10.1101/gad.169029.111 Smith-Garvin, 2009, T cell activation, Annu. Rev. Immunol., 27, 591, 10.1146/annurev.immunol.021908.132706 Srinivasan, 2007, Reciprocal NFAT1 and NFAT2 nuclear localization in CD8+ anergic T cells is regulated by suboptimal calcium signaling, J. Immunol., 179, 3734, 10.4049/jimmunol.179.6.3734 Staron, 2014, The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection, Immunity, 41, 802, 10.1016/j.immuni.2014.10.013 Vander Heiden, 2010, Evidence for an alternative glycolytic pathway in rapidly proliferating cells, Science, 329, 1492, 10.1126/science.1188015 Wang, 2011, The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, 35, 871, 10.1016/j.immuni.2011.09.021 Wang, 2011, Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors, PLoS ONE, 6, e17621, 10.1371/journal.pone.0017621 Ward, 2012, Metabolic reprogramming: a cancer hallmark even warburg did not anticipate, Cancer Cell, 21, 297, 10.1016/j.ccr.2012.02.014 Wherry, 2011, T cell exhaustion, Nat. Immunol., 12, 492, 10.1038/ni.2035 Wolchok, 2013, Nivolumab plus ipilimumab in advanced melanoma, N. Engl. J. Med., 369, 122, 10.1056/NEJMoa1302369 Yang, 2013, Oncometabolites: linking altered metabolism with cancer, J. Clin. Invest., 123, 3652, 10.1172/JCI67228 Ying, 2012, Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism, Cell, 149, 656, 10.1016/j.cell.2012.01.058 Zheng, 2009, Anergic T cells are metabolically anergic, J. Immunol., 183, 6095, 10.4049/jimmunol.0803510