A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors
Tài liệu tham khảo
Basualdo, J.R., et al., 2017. PARCS-SUBCHANFLOW-TRANSURANUS Multiphysics Coupling for Improved PWR’s Simulations, The International Congress on Advances in Nuclear Power Plants (ICAPP-2017), Fukui and Kyoto, Japan.
CASL. Consortium for Advanced Simulation of Light Water Reactors (CASL).http://www.casl.gov (accessed 21.05.2019).
CEA/DEN, EDF R&D, OPEN CASCADE, SALOME Platform Documentation: Documentation of the Interface for Code Coupling (ICoCo).https://docs.salome-platform.org/latest/extra/Interface_for_Code_Coupling.pdf (accessed 21.05.2019).
CEA/DEN, EDF R&D, OPEN CASCADE, SALOME Platform Documentation: MEDCoupling User’s Guide.https://docs.salome-platform.org/7/dev/MEDCoupling/index.html (accessed 21.05.2019).
Cunningham, M.E., et al. GT2R2: An Updated Version of GAPCONTHERMAL-2, NUREG/CR-3907, PNL-5178 Technical Report. Pacific Northwest Laboratory.
Dufek, 2013, Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal-hydraulic feedback, Ann. Nucl. Energy, 62, 260, 10.1016/j.anucene.2013.06.025
Dufek, 2013, The stochastic implicit Euler method – a stable coupling scheme for Monte Carlo burnup calculations, Ann. Nucl. Energy, 60, 295, 10.1016/j.anucene.2013.05.015
García, 2019, Development of an Object-oriented Serpent2-SUBCHANFLOW Coupling and Verification with Problem 6 of the VERA Core Physics Benchmark
García, 2020, Serpent2-SUBCHANFLOW pin-by-pin modelling capabilities for VVER geometries, Ann. Nucl. Energy, 135, 10.1016/j.anucene.2019.106955
García, M., et al., 2019. Advanced Modelling Capabilities for Pin-level Subchannel Analysis of PWR and VVER Reactors, 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, Oregon, USA.
Grandi, G., et al., 2010. Effect of CASMO-5 Cross-section Data and Doppler Temperature Definitions on LWR Reactivity Initiated Accidents, The International Congress on Advances in Nuclear Power Plants (ICAPP-2017), Pittsburgh, Pennsylvania, USA.
Hagrman, 1979
Imke, 2012, Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT), Sci. Technol. Nucl. Instal., 10.1155/2012/465059
Lassmann, 1987, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Design, 103, 10.1016/0029-5493(87)90275-5
Leppänen, 2015, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy, 82, 142, 10.1016/j.anucene.2014.08.024
Lötsch, T., et al. Corrections and additions to the proposal of a benchmark for core burnup calculations for a VVER-1000 reactor. In: Proceedings of the Twentieth Symposium of Atomic Energy Research, Hungary, Kiadja and KFKI Atomenergia Kutatointezet.
Mercatali, L., et al., 2018. The EC McSAFE Project: High Performance Monte Carlo Methods for Safety Demonstration – Status and Perspectives, International Multi-Physics Validation Workshop, North Carolina State University, Raleigh, USA.
Steinbuch Centre for Computing (SCC). ForHLR II Documentation.https://www.scc.kit.edu/dienste/forhlr2.php (accessed 21.05.2019).
Uffelen, 2008, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater., 383, 137, 10.1016/j.jnucmat.2008.08.043
Valtavirta, 2017
Yu, 2019, MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON, Comput. Phys. Commun., 238, 1, 10.1016/j.cpc.2019.01.001