Advanced adsorbents for ibuprofen removal from aquatic environments: a review
Springer Science and Business Media LLC - Trang 1-46 - 2023
Tóm tắt
The presence of pharmaceuticals in ecosystems is a major health issue, calling for advanced methods to clean wastewater before effluents reach rivers. Here, we review advanced adsorption methods to remove ibuprofen, with a focus on ibuprofen occurrence and toxicity, adsorbents, kinetics, and adsorption isotherms. Adsorbents include carbon- and silica-based materials, metal–organic frameworks, clays, polymers, and bioadsorbents. Carbon-based adsorbents allow the highest adsorption of ibuprofen, from 10.8 to 408 mg/g for activated carbon and 2.5–1033 mg/g for biochar. Metal–organic frameworks appear promising due to their high surface areas and tunable properties and morphology. 95% of published reports reveal that adsorption kinetics follow the pseudo-second-order model, indicating that the adsorption is predominantly governed by chemical adsorption. 70% of published reports disclose that the Langmuir model describes the adsorption isotherm, suggesting that adsorption involves monolayer adsorption.
Tài liệu tham khảo
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A (2022) Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): a systematic review. Inorg Chem Commun 145:109959. https://doi.org/10.1016/j.inoche.2022.109959
Abolhasani S, Ahmadpour A, Bastami TR, Yaqubzadeh A (2019) Facile synthesis of mesoporous carbon aerogel for the removal of ibuprofen from aqueous solution by central composite experimental design (CCD). J Mol Liq 281:261–268. https://doi.org/10.1016/j.molliq.2019.02.084
Abukhadra MR, Refay NM, Nadeem A, El-Sherbeeny AM, Ibrahim KE (2020) Insight into the role of integrated carbohydrate polymers (starch, chitosan, and β-cyclodextrin) with mesoporous silica as carriers for ibuprofen drug; equilibrium and pharmacokinetic properties. Int J Biol Macromol 156:537–547. https://doi.org/10.1016/j.ijbiomac.2020.04.052
Adeleye AT, Akande AA, Odoh CK, Philip M, Fidelis TT, Amos PI, Banjoko OO (2021) Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: a green and sustainable approach. J Ind Eng Chem 96:59–75. https://doi.org/10.1016/j.jiec.2021.01.044
Afifeh MR, Ahmadpour A, Mosavian MTH, Ayati A, Bamoharram FF, Hekmatikar FA (2019) A green approach to the facile synthesis of colloidal platinum nanoparticles by Preyssler polyoxometalate. J Nanostruct 9:249–257. https://doi.org/10.22052/JNS.2019.02.007
Ahmadpour A, Eftekhari N, Ayati A (2014) Performance of MWCNTs and a low-cost adsorbent for chromium(VI) ion removal. J Nanostruct Chem 4(4):171–178. https://doi.org/10.1007/s40097-014-0119-9
Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073
Ai T, Jiang X, Zhong Z, Li D, Dai S (2020) Methanol-modified ultra-fine magnetic orange peel powder biochar as an effective adsorbent for removal of ibuprofen and sulfamethoxazole from water. Adsorp Sci Tech 38(7–8):304–321. https://doi.org/10.1177/0263617420944659
Akash S, Sivaprakash B, Rajamohan N, Govarthanan M, Elakiya BT (2022) Remediation of pharmaceutical pollutants using graphene-based materials - A review on operating conditions, mechanism and toxicology. Chemosphere 306:135520. https://doi.org/10.1016/j.chemosphere.2022.135520
Akbari Beni F, Gholami A, Ayati A, Niknam Shahrak M, Sillanpää M (2020) UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Micropor Mesopor Mater 303:110275. https://doi.org/10.1016/j.micromeso.2020.110275
Akhil D, Lakshmi D, Senthil Kumar P, Vo D-VN, Kartik A (2021) Occurrence and removal of antibiotics from industrial wastewater. Environ Chem Lett 19(2):1477–1507. https://doi.org/10.1007/s10311-020-01152-0
Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Ali MEM, Abd El-Aty AM, Badawy MI, Ali RK (2018) Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol Environ Saf 151:144–152. https://doi.org/10.1016/j.ecoenv.2018.01.0123
Ali SNF, El-Shafey EI, Al-Busafi S, Al-Lawati HAJ (2019) Adsorption of chlorpheniramine and ibuprofen on surface functionalized activated carbons from deionized water and spiked hospital wastewater. J Environ Chem Eng 7(1):102860. https://doi.org/10.1016/j.jece.2018.102860
Alipour E, Alimohammady F, Yumashev A, Maseleno A (2019) Fullerene C60 containing porphyrin-like metal center as drug delivery system for ibuprofen drug. J Mol Model 26(1):7. https://doi.org/10.1007/s00894-019-4267-1
Alitabar-Ferozjah H, Rahbar-Kelishami A (2022) Simultaneous effect of multi-walled carbon nanotube and Span85 on the extraction of Ibuprofen from aqueous solution using emulsion liquid membrane. J Mol Liq 365:120051. https://doi.org/10.1016/j.molliq.2022.120051
Al-Khateeb LA, Al-zahrani MA, El Hamd MA, El-Maghrabey M, Dahas FA, El-Shaheny R (2021) High-temperature liquid chromatography for evaluation of the efficiency of multiwalled carbon nanotubes as nano extraction beds for removal of acidic drugs from wastewater Greenness profiling and comprehensive kinetics and thermodynamics studies. J Chromatogr A 1639:461891. https://doi.org/10.1016/j.chroma.2021.461891
Al-Kindi GY, Al-Haidri H (2021) The removal of ibuprofen drugs residues from municipal wastewater by Moringa Oleifera Seeds. J Ecol Eng 22(1):83–94. https://doi.org/10.12911/22998993/128868
Al-rimawi F, Daana M, Khamis M, Karaman R, Khoury H, Qurie M (2019) Removal of selected pharmaceuticals from aqueous solutions using natural jordanian zeolite. Arab J Sci Eng 44(1):209–215. https://doi.org/10.1007/s13369-018-3406-9
Álvarez-Torrellas S, Rodríguez A, Ovejero G, García J (2016) Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem Eng J 283:936–947. https://doi.org/10.1016/j.cej.2015.08.023
Al-Yousef HA, Alotaibi BM, Alanazi MM, Aouaini F, Sellaoui L, Bonilla-Petriciolet A (2021) Theoretical assessment of the adsorption mechanism of ibuprofen, ampicillin, orange G and malachite green on a biomass functionalized with plasma. J Environ Chem Eng 9(1):104950. https://doi.org/10.1016/j.jece.2020.104950
Al-Yousef HA, Alotaibi BM, Aouaini F, Sellaoui L, Bonilla-Petriciolet A (2021) Adsorption of ibuprofen on cocoa shell biomass-based adsorbents: interpretation of the adsorption equilibrium via statistical physics theory. J Mol Liq 331:115697. https://doi.org/10.1016/j.molliq.2021.115697
Ameen F, Mostafazadeh R, Hamidian Y, Erk N, Sanati AL, Karaman C, Ayati A (2023) Modeling of adsorptive removal of azithromycin from aquatic media by CoFe2O4/NiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products. Chemosphere 329:138635. https://doi.org/10.1016/j.chemosphere.2023.138635
Amiri A, Mirzaei M, Derakhshanrad S (2019) A nanohybrid composed of polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC. Microchim Acta 186(8):534. https://doi.org/10.1007/s00604-019-3694-0
Amrhar O, El Gana L, Mobarak M (2021) Calculation of adsorption isotherms by statistical physics models: a review. Environ Chem Lett 19(6):4519–4547. https://doi.org/10.1007/s10311-021-01279-8
An HJ, Bhadra BN, Khan NA, Jhung SH (2018) Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon. Chem Eng J 343:447–454. https://doi.org/10.1016/j.cej.2018.03.025
Anand U, Adelodun B, Cabreros C, Kumar P, Suresh S, Dey A, Ballesteros F, Bontempi E (2022) Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: a review. Environ Chem Lett 20(6):3883–3904. https://doi.org/10.1007/s10311-022-01498-7
Arinkoola A, Alagbe S, Akinwole I, Ogundiran A, Ajayi L, Agbede O, Ogunleye O (2022) Adsorptive removal of Ibuprofen, Ketoprofen and Naproxen from aqueous solution using coconut shell biomass. Environ Res Eng Manage 78(2):28–37. https://doi.org/10.5755/j01.erem.78.2.29695
Aryee AA, Mpatani FM, Kani AN, Dovi E, Han R, Li Z, Qu L (2021) A review on functionalized adsorbents based on peanut husk for the sequestration of pollutants in wastewater: modification methods and adsorption study. J Clean Product 310:127502. https://doi.org/10.1016/j.jclepro.2021.127502
Ávila MI, Alonso-Morales N, Baeza JA, Rodríguez JJ, Gilarranz MA (2020) High load drug release systems based on carbon porous nanocapsule carriers Ibuprofen case study. J Mater Chem B 8(24):5293–5304. https://doi.org/10.1039/D0TB00329H
Awad H, Gar Alalm M, El-Etriby HK (2019) Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries. Sci Total Environ 660:57–68. https://doi.org/10.1016/j.scitotenv.2018.12.386
Ayati A, Ahmadpour A, Bamoharram FF, Heravi MM, Rashidi H (2011) Photocatalytic synthesis of gold nanoparticles using preyssler acid and their photocatalytic activity. China J Catal 32(6):978–982. https://doi.org/10.1016/S1872-2067(10)60221-5
Ayati A, Shahrak MN, Tanhaei B, Sillanpää M (2016) Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere 160:30–44. https://doi.org/10.1016/j.chemosphere.2016.06.065
Ayati A, Ranjbari S, Tanhaei B, Sillanpää M (2019) Ionic liquid-modified composites for the adsorptive removal of emerging water contaminants: a review. J. Mol. Liq. 275:71–83. https://doi.org/10.1016/j.molliq.2018.11.016
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C (2023) Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: a review. Chemosphere 323:138241. https://doi.org/10.1016/j.chemosphere.2023.138241
Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J. https://doi.org/10.1016/j.cej.2012.09.099
Balakrishnan A, Appunni S, Chinthala M, Jacob MM, Vo D-VN, Reddy SS, Kunnel ES (2023) Chitosan-based beads as sustainable adsorbents for wastewater remediation: a review. Environ Chem Lett 21(3):1881–1905. https://doi.org/10.1007/s10311-023-01563-9
Bany-Aiesh H, Banat R, Al-Sou’od K (2015) Kinetics and Adsorption Isotherm of Ibuprofen onto Grafted β-CD/Chitosan Polymer. Am J Appl Sci 12(12):917–930. https://doi.org/10.3844/ajassp.2015.917.930
Barczak M (2019) Amine-modified mesoporous silicas: Morphology-controlled synthesis toward efficient removal of pharmaceuticals. Micropor Mesopor Mater 278:354–365. https://doi.org/10.1016/j.micromeso.2019.01.012
Bastami TR, Ahmadpour A, Hekmatikar FA (2017) Synthesis of Fe3O4/Bi2WO6 nanohybrid for the photocatalytic degradation of pharmaceutical ibuprofen under solar light. J Ind Eng Chem 51:244–254. https://doi.org/10.1016/j.jiec.2017.03.008
Behera SK, Oh SY, Park HS (2012) Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int J Environ Sci Technol 9(1):85–94. https://doi.org/10.1007/s13762-011-0020-8
Bello MM, Raman AAA (2019) Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environ Chem Lett 17(2):1125–1142. https://doi.org/10.1007/s10311-018-00842-0
Bello OS, Alao OC, Alagbada TC, Olatunde AM (2019) Biosorption of ibuprofen using functionalized bean husks. Sustain Chem Pharm 13:100151. https://doi.org/10.1016/j.scp.2019.100151
Bello OS, Alao OC, Alagbada TC, Agboola OS, Omotoba OT, Abikoye OR (2020) A renewable, sustainable and low-cost adsorbent for ibuprofen removal. Water Sci Technol 83(1):111–122. https://doi.org/10.2166/wst.2020.551
Bello OS, Moshood MA, Ewetumo BA, Afolabi IC (2020) Ibuprofen removal using coconut husk activated Biomass. Chem Data Collect 29:100533. https://doi.org/10.1016/j.cdc.2020.100533
Benedini L, Placente D, Ruso J, Messina P (2019) Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods. Mater Sci Eng C 99:180–190. https://doi.org/10.1016/j.msec.2019.01.098
Bhadra BN, Ahmed I, Kim S, Jhung SH (2017) Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem Eng J 314:50–58. https://doi.org/10.1016/j.cej.2016.12.127
Bouissou-Schurtz C, Houeto P, Guerbet M, Bachelot M, Casellas C, Mauclaire A-C, Panetier P, Delval C, Masset D (2014) Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regul Toxicol Pharm 69(3):296–303. https://doi.org/10.1016/j.yrtph.2014.04.006
Brillas E (2022) A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. Chemosphere 286:131849. https://doi.org/10.1016/j.chemosphere.2021.131849
Brun GL, Bernier M, Losier R, Doe K, Jackman P, Lee H-B (2006) Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluents and receiving waters, and potential for environmental effects as measured by acute and chronic aquatic toxicity. Environ Toxicol Chem 25:2163–2176. https://doi.org/10.1897/05-426r.1
Bui TX, Choi H (2009) Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 168(2):602–608. https://doi.org/10.1016/j.jhazmat.2009.02.072
Bursztyn Fuentes AL, Benito DE, Montes ML, Scian AN, Lombardi MB (2022) Paracetamol and Ibuprofen removal from aqueous phase using a ceramic-derived activated carbon. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-07307-1
Caban M, Stepnowski P (2021) How to decrease pharmaceuticals in the environment? A review environmental. Chem Lett 19(4):3115–3138. https://doi.org/10.1007/s10311-021-01194-y
Cao W, Yuan Y, Yang C, Wu S, Cheng J (2020) In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem Eng J 391:123608. https://doi.org/10.1016/j.cej.2019.123608
Chahm T, Rodrigues CA (2017) Removal of ibuprofen from aqueous solutions using O-carboxymethyl-N-laurylchitosan/γ-Fe2O3. Environ Nanotechnol Monit Manag 7:139–148. https://doi.org/10.1016/j.enmm.2017.03.0013
Chakraborty P, Banerjee S, Kumar S, Sadhukhan S, Halder G (2018) Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: Isotherm, kinetics, thermodynamics and cost estimation. Proc Safe Environ Protect 118:10–23. https://doi.org/10.1016/j.psep.2018.06.015
Chakraborty P, Show S, Banerjee S, Halder G (2018) Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: performance evaluation and cost estimation. J Environ Chem Eng 6(4):5287–5300. https://doi.org/10.1016/j.jece.2018.08.017
Chakraborty P, Show S, Ur Rahman W, Halder G (2019) Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar. Proc Safe Environ Protect 126:193–204. https://doi.org/10.1016/j.psep.2019.04.011
Chakraborty P, Singh SD, Gorai I, Singh D, Rahman W-U, Halder G (2020) Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J Water Proc Eng 33:101022. https://doi.org/10.1016/j.jwpe.2019.101022
Chandrashekar KS, Balakrishnan RM (2021) Adsorption of pharmaceuticals pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the aqueous phase using amine functionalized superparamagnetic silica nanocomposite. J Clean Product 294:126155. https://doi.org/10.1016/j.jclepro.2021.126155
Chang F, Memon N, Memon S, Chang AS (2022) Selective adsorption of emerging contaminants from aqueous solution using Cu-based composite by solvothermal. Int J Environ Sci Technol 19(11):11161–11168. https://doi.org/10.1007/s13762-021-03882-2
Chávez AM, Rey A, López J, Álvarez PM, Beltrán FJ (2021) Critical aspects of the stability and catalytic activity of MIL-100(Fe) in different advanced oxidation processes. Sep Pur Technol 255:117660. https://doi.org/10.1016/j.seppur.2020.117660
Chen C, Xu L, Huo J-B, Gupta K, Fu M-L (2020) Simultaneous removal of butylparaben and arsenite by MOF-derived porous carbon coated lanthanum oxide: combination of persulfate activation and adsorption. Chem. Eng. J 391:123552. https://doi.org/10.1016/j.cej.2019.123552
Cho H-H, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of Ibuprofen and Triclosan onto carbon nanotubes. Langmuir 27(21):12960–12967. https://doi.org/10.1021/la202459g
Choi J, Shin WS (2020) Removal of Salicylic and Ibuprofen by Hexadecyltrimethylammonium-Modified Montmorillonite and Zeolite. Minerals 10(10):898. https://doi.org/10.3390/min10100898
Choi M, Choi DW, Lee JY, Kim YS, Kim BS, Lee BH (2012) Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation)–MBR (membrane bioreactor) and ozone oxidation. Water Sci Technol 66(12):2546–2555. https://doi.org/10.2166/wst.2012.429
Choong CE, Ibrahim S, Basirun WJ (2019) Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen. J Colloid Interf Sci 541:12–17. https://doi.org/10.1016/j.jcis.2019.01.071
Chopra S, Kumar D (2020) Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 6(6):e04087. https://doi.org/10.1016/j.heliyon.2020.e04087
Choudhary V, Philip L (2022) Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary treated wastewater. J Environ Chem Eng 10(3):107592. https://doi.org/10.1016/j.jece.2022.107592
Ciesielczyk F, Goscianska J, Zdarta J, Jesionowski T (2018) The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients. Coll Surf A: Physicochem Eng Asp 545:39–50. https://doi.org/10.1016/j.colsurfa.2018.02.036
Ciesielczyk F, Żółtowska-Aksamitowska S, Jankowska K, Zembrzuska J, Zdarta J, Jesionowski T (2019) The role of novel lignosulfonate-based sorbent in a sorption mechanism of active pharmaceutical ingredient: batch adsorption tests and interaction study. Adsorption 25(4):865–880. https://doi.org/10.1007/s10450-019-00099-1
Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194. https://doi.org/10.1016/S0378-4274(03)00068-7
Coimbra RN, Calisto V, Ferreira CIA, Esteves VI, Otero M (2019) Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arab J Chem 12(8):3611–3620. https://doi.org/10.1016/j.arabjc.2015.12.001
Collado N, Buttiglieri G, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Comas J, Rodriguez-Roda I (2012) Removal of ibuprofen and its transformation products: experimental and simulation studies. Sci Total Environ. 433:296–301. https://doi.org/10.1016/j.scitotenv.2012.06.060
Davarnejad R, Soofi B, Farghadani F, Behfar R (2018) Ibuprofen removal from a medicinal effluent: a review on the various techniques for medicinal effluents treatment. Environ Technol Innov 11:308–320. https://doi.org/10.1016/j.eti.2018.06.011
de Boer MA, Hammerton M, Slootweg JC (2018) Uptake of pharmaceuticals by sorbent-amended struvite fertilisers recovered from human urine and their bioaccumulation in tomato fruit. Water Res 133:19–26. https://doi.org/10.1016/j.watres.2018.01.017
de Melo Pirete L, Camargo FP, Dornelles HS, Granatto CF, Sakamoto IK, Grosseli GM, Fadini PS, Silva EL, Varesche MBA (2022) Biodegradation of diclofenac and ibuprofen in Fluidized Bed Reactor applied to sanitary sewage treatment in acidogenic and denitrifying conditions. J Water Proc Eng 49:102964. https://doi.org/10.1016/j.jwpe.2022.102964
De Oliveira T, Boussafir M, Fougère L, Destandau E, Sugahara Y, Guégan R (2020) Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. Chemosphere 259:127480. https://doi.org/10.1016/j.chemosphere.2020.127480
Delgado-Moreno L, Bazhari S, Gasco G, Méndez A, El Azzouzi M, Romero E (2021) New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes. Sci Total Environ 752:141838. https://doi.org/10.1016/j.scitotenv.2020.141838
Delle Piane M, Vaccari S, Corno M, Ugliengo P (2014) Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J Phys Chem A 118(31):5801–5807. https://doi.org/10.1021/jp411173k
Diagboya PNE, Dikio ED (2018) Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Micropor Mesopor Mater 266:252–267. https://doi.org/10.1016/j.micromeso.2018.03.008
Du Y-d, Zhang X-q, Shu L, Feng Y, Lv C, Liu H-q, Xu F, Wang Q, Zhao C-c, Kong Q (2021) Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. Environ Sci Pollut Res 28(30):40568–40586. https://doi.org/10.1007/s11356-020-09714-z
Duarte EDV, Oliveira MG, Spaolonzi MP, Costa HPS, Silva TLd, Silva MGCd, Vieira MGA (2022) Adsorption of pharmaceutical products from aqueous solutions on functionalized carbon nanotubes by conventional and green methods: a critical review. J Clean Product. 372:133743. https://doi.org/10.1016/j.jclepro.2022.133743
Dubey SP, Dwivedi AD, Sillanpää M, Gopal K (2010) Artemisia vulgaris-derived mesoporous honeycomb-shaped activated carbon for ibuprofen adsorption. Chem Eng J 165(2):537–544. https://doi.org/10.1016/j.cej.2010.09.068
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H (2023) Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Instit Chem Eng 145:104844. https://doi.org/10.1016/j.jtice.2023.104844
Ejeromedoghene O, Oderinde O, Okoye CO, Oladipo A, Alli YA (2022) Microporous metal-organic frameworks based on deep eutectic solvents for adsorption of toxic gases and volatile organic compounds: a review. Chem Eng J Adv 12:100361. https://doi.org/10.1016/j.ceja.2022.100361
Elizalde-Velázquez A, Subbiah S, Anderson TA, Green MJ, Zhao X, Cañas-Carrell JE (2020) Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. Sci Total Environ. 715:136974. https://doi.org/10.1016/j.scitotenv.2020.136974
El-Sheikh AH, Qawariq RF, Abdelghani JI (2019) Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ Technol Innov 16:100496. https://doi.org/10.1016/j.eti.2019.100496
Essandoh M, Kunwar B, Pittman CU, Mohan D, Mlsna T (2015) Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem Eng J 265:219–227. https://doi.org/10.1016/j.cej.2014.12.006
Estevez E, Hernandez-Moreno JM, Fernandez-Vera JR, Palacios-Diaz MP (2014) Ibuprofen adsorption in four agricultural volcanic soils. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2013.07.068
Fang T-H, Nan F-H, Chin T-S, Feng H-M (2012) The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar Pollut Bull 64(7):1435–1444. https://doi.org/10.1016/j.marpolbul.2012.04.008
Farghali M, Mohamed IMA, Osman AI, Rooney DW (2023) Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environ Chem Lett 21(1):97–152. https://doi.org/10.1007/s10311-022-01520-y
Farrokhi Z, Ayati A, Kanvisi M, Sillanpää M (2019) Recent advance in antibacterial activity of nanoparticles contained polyurethane. J Appl Polym Sci 136:46997. https://doi.org/10.1002/app.46997
Fayyazi M, Solaimany Nazar AR, Farhadian M, Tangestaninejad S (2022) Adsorptive removal of ibuprofen to binary and amine-functionalized UiO-66 in the aquatic environment: synergistic/antagonistic evaluation. Environ Sci Pollut Res 29(46):69502–69516. https://doi.org/10.1007/s11356-022-20703-2
Femina Carolin C, Senthil Kumar P, Janet Joshiba G, Vinoth Kumar V (2021) Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environ Chem Lett 19(1):329–343. https://doi.org/10.1007/s10311-020-01068-9
Ferrah N, Merghache D, Meftah S, Benbellil S (2022) A new alternative of a green polymeric matrix chitosan/alginate-polyethyleniminemethylene phosphonic acid for pharmaceutical residues adsorption. Environ Sci Pollut Res 29(9):13675–13687. https://doi.org/10.1007/s11356-021-16599-z3
Ferrer-Polonio E, Fernández-Navarro J, Iborra-Clar M-I, Alcaina-Miranda M-I, Mendoza-Roca JA (2020) Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. J Environ Manage 263:110368. https://doi.org/10.1016/j.jenvman.2020.110368
Franco DSP, Pinto D, Georgin J, Netto MS, Foletto EL, Manera C, Godinho M, Silva LFO, Dotto GL (2022) Conversion of Erythrina speciosa pods to porous adsorbent for Ibuprofen removal. J Environ Chem Eng 10(3):108070. https://doi.org/10.1016/j.jece.2022.108070
Fröhlich AC, dos Reis GS, Pavan FA, Lima ÉC, Foletto EL, Dotto GL (2018) Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption. Environ Sci Pollut Res 25(25):24713–24725. https://doi.org/10.1007/s11356-018-2525-x
Fröhlich AC, Ocampo-Pérez R, Diaz-Blancas V, Salau NPG, Dotto GL (2018) Three-dimensional mass transfer modeling of ibuprofen adsorption on activated carbon prepared by sonication. Chem Eng J 341:65–74. https://doi.org/10.1016/j.cej.2018.02.020
Fröhlich AC, Foletto EL, Dotto GL (2019) Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J Clean Product 229:828–837. https://doi.org/10.1016/j.jclepro.2019.05.037
Gámiz B, Hermosín MC, Cornejo J, Celis R (2015) Hexadimethrine-montmorillonite nanocomposite: characterization and application as a pesticide adsorbent. Appl Surf Sci 332:606–613. https://doi.org/10.1016/j.apsusc.2015.01.179
Ganesan S, Eswaran M, Chokkiah B, Dhanusuraman R, Lingassamy AP, Ponnusamy VK, Kumar G, Pugazhendhi A (2021) Facile and low-cost production of Lantana camara stalk-derived porous carbon nanostructures with excellent supercapacitance and adsorption performance. Int J. Energy Res 45(12):17440–17449. https://doi.org/10.1002/er.5730
Geiger E, Hornek-Gausterer R, Saçan MT (2016) Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxic Environ Saf 129:189–198. https://doi.org/10.1016/j.ecoenv.2016.03.032
Gellerstedt G, Henriksson G (2008) Chapter 9 - Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224. https://doi.org/10.1016/B978-0-08-045316-3.00009-0
Gennaro Bd, Izzo F, Catalanotti L, Langella A, Mercurio M (2017) Surface modified phillipsite as a potential carrier for NSAIDs release. Adv Sci Lett 23(6):5941–5943. https://doi.org/10.1166/asl.2017.9075
Ghasemi M, Khedri M, Didandeh M, Taheri M, Ghasemy E, Maleki R, Shon Hk, Razmjou A (2022) Removal of pharmaceutical pollutants from wastewater using 2D covalent organic frameworks (COFs): an in silico engineering study. Ind Eng Chem Res 61(25):8809–8820. https://doi.org/10.1021/acs.iecr.2c00924
Ghemit R, Makhloufi A, Djebri N, Flilissa A, Zerroual L, Boutahala M (2019) Adsorptive removal of diclofenac and ibuprofen from aqueous solution by organobentonites: study in single and binary systems. Groundw Sustain Dev 8:520–529. https://doi.org/10.1016/j.gsd.2019.02.004
Gibson R, Durán-Álvarez JC, Estrada KL, Chávez A, Jiménez Cisneros B (2010) Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 81(11):1437–1445. https://doi.org/10.1016/j.chemosphere.2010.09.006
González-Hurtado M, Marins JA, Soares BG, Briones JR, Rodríguez AR, Ortiz-Islas E (2018) Magnetic SiO2-Fe3O4 nanocomposites as carriers of Ibuprofen for controlled release applications. Rev Adv Mater Sci 55(1):12–20. https://doi.org/10.1515/rams-2018-0023
Gopinath A, Kadirvelu K (2018) Strategies to design modified activated carbon fibers for the decontamination of water and air. Environ Chem Lett 16(4):1137–1168. https://doi.org/10.1007/s10311-018-0740-9
Gopinath KP, Vo D-VN, Gnana Prakash D, Adithya Joseph A, Viswanathan S, Arun J (2021) Environmental applications of carbon-based materials: a review. Environ Chem Lett 19(1):557–582. https://doi.org/10.1007/s10311-020-01084-9
Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. CLEAN–Soil Air Water 43(4):479–489. https://doi.org/10.1002/clen.201300989
Grzesiuk M, Pijanowska J, Markowska M, Bednarska A (2020) Morphological deformation of Daphnia magna embryos caused by prolonged exposure to ibuprofen. Environ Pollut 261:114135. https://doi.org/10.1016/j.envpol.2020.114135
Gu Y, Huang J, Zeng G, Shi L, Shi Y, Yi K (2018) Fate of pharmaceuticals during membrane bioreactor treatment: status and perspectives. Bioresour Technol 268:733–748. https://doi.org/10.1016/j.biortech.2018.08.029
Guedidi H, Reinert L, Lévêque J-M, Soneda Y, Bellakhal N, Duclaux L (2013) The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon 54:432–443. https://doi.org/10.1016/j.carbon.2012.11.059
Guillossou R, Le Roux J, Mailler R, Vulliet E, Morlay C, Nauleau F, Gasperi J, Rocher V (2019) Organic micropollutants in a large wastewater treatment plant: what are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 218:1050–1060. https://doi.org/10.1016/j.chemosphere.2018.11.182
Guillossou R, Le Roux J, Mailler R, Pereira-Derome CS, Varrault G, Bressy A, Vulliet E, Morlay C, Nauleau F, Rocher V, Gasperi J (2020) Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption. Water Res 172:115487. https://doi.org/10.1016/j.watres.2020.115487
Gul A, Khaligh NG, Julkapli NM (2021) Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment. J Mol Struct 1235:130148. https://doi.org/10.1016/j.molstruc.2021.130148
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MdC, Islas-Flores H, Galar-Martínez M, Dublán-García O, Romero R (2020) Ibuprofen at environmentally relevant concentrations alters embryonic development, induces teratogenesis and oxidative stress in Cyprinus carpio. Sci Total Environ. 710:136327. https://doi.org/10.1016/j.scitotenv.2019.136327
Hamidon TS, Adnan R, Haafiz MKM, Hussin MH (2022) Cellulose-based beads for the adsorptive removal of wastewater effluents: a review. Environ Chem Lett 20(3):1965–2017. https://doi.org/10.1007/s10311-022-01401-4
Hanbali G, Jodeh S, Hamed O, Bol R, Khalaf B, Qdemat A, Samhan S (2020) Enhanced Ibuprofen adsorption and desorption on synthesized functionalized magnetic multiwall carbon nanotubes from aqueous solution. Mater (Basel). https://doi.org/10.3390/ma13153329
Hasan Z, Choi E-J, Jhung SH (2013) Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J 219:537–544. https://doi.org/10.1016/j.cej.2013.01.002
Hasan M, Alfredo K, Murthy S, Riffat R (2021) Biodegradation of salicylic acid, acetaminophen and ibuprofen by bacteria collected from a full-scale drinking water biofilter. J Enviorn Manage 295:113071. https://doi.org/10.1016/j.jenvman.2021.113071
Haydar S, Ferro-Garcia MA, Rivera-Utrilla J, Joly JP (2003) Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 41(3):387–395. https://doi.org/10.1016/S0008-6223(02)00344-5
Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous Metal-Organic Frameworks for a controlled drug delivery. J Am Chem Soc 130(21):6774–6780. https://doi.org/10.1021/ja710973k
Hounfodji JW, Kanhounnon WG, Kpotin G, Atohoun GS, Lainé J, Foucaud Y, Badawi M (2021) Molecular insights on the adsorption of some pharmaceutical residues from wastewater on kaolinite surfaces. Chem Eng J 407:127176. https://doi.org/10.1016/j.cej.2020.127176
Huang L, Shen R, Shuai Q (2021) Adsorptive removal of pharmaceuticals from water using metal-organic frameworks: A review. J Environ Manage 277:111389. https://doi.org/10.1016/j.jenvman.2020.111389
Huppert N, Würtele M, Hahn HH (1998) Determination of the plasticizer N-butylbenzenesulfonamide and the pharmaceutical Ibuprofen in wastewater using solid phase microextraction (SPME). Fresenius’ J Anal Chem 362(6):529–536. https://doi.org/10.1007/s002160051119
Huxford RC, Della Rocca J, Lin W (2010) Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol 14(2):262–268. https://doi.org/10.1016/j.cbpa.2009.12.012
Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO (2021) Adsorption of ciprofloxacin from water: a comprehensive review. J Ind Eng Chem 93:57–77. https://doi.org/10.1016/j.jiec.2020.09.023
Izzo F, Mercurio M, de Gennaro B, Aprea P, Cappelletti P, Daković A, Germinario C, Grifa C, Smiljanic D, Langella A (2019) Surface modified natural zeolites (SMNZs) as nanocomposite versatile materials for health and environment. Coll Surf B 182:110380. https://doi.org/10.1016/j.colsurfb.2019.110380
Jadach B, Feliczak-Guzik A, Nowak I, Milanowski B, Piotrowska-Kempisty H, Murias M, Lulek J (2019) Modifying release of poorly soluble active pharmaceutical ingredients with the amine functionalized SBA-16 type mesoporous materials. J Biomater Appl 33(9):1214–1231. https://doi.org/10.1177/0885328219830823
Jain M, Khan SA, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT (2021) Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. Sci Total Environ 793:148583. https://doi.org/10.1016/j.scitotenv.2021.148583
Jamil S, Loganathan P, Kandasamy J, Listowski A, McDonald JA, Khan SJ, Vigneswaran S (2020) Removal of organic matter from wastewater reverse osmosis concentrate using granular activated carbon and anion exchange resin adsorbent columns in sequence. Chemosphere 261:127549. https://doi.org/10.1016/j.chemosphere.2020.127549
Jean-Rameaux B, Brice T, Sadou D, Jean-Baptiste T, Berthelot ST, Elie A, Georges KY, Samuel L (2021) Multi-functionalized cellulosic biomass by plasma-assisted bonding of α-amino carboxylic acid to enhance the removal of ibuprofen in aqueous solution. J. Polym. Environ. 29(4):1176–1191. https://doi.org/10.1007/s10924-020-01958-7
Jian N, Qian L, Wang C, Li R, Xu Q, Li J (2019) Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. J Hazard Mater 363:81–89. https://doi.org/10.1016/j.jhazmat.2018.09.052
Jiang M, Yang W, Zhang Z, Yang Z, Wang Y (2015) Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J Environ Sci 31:226–234. https://doi.org/10.1016/j.jes.2014.09.035
Jin X, Zhang S, Yang S, Zong Y, Xu L, Jin P, Yang C, Hu S, Li Y, Shi X, Wang XC (2021) Behaviour of ozone in the hybrid ozonation-coagulation (HOC) process for ibuprofen removal: reaction selectivity and effects on coagulant hydrolysis. Sci Total Environ 794:148685. https://doi.org/10.1016/j.scitotenv.2021.148685
Jun B-M, Heo J, Park CM, Yoon Y (2019) Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. Chemosphere 235:527–537. https://doi.org/10.1016/j.chemosphere.2019.06.208
Jung C, Son A, Her N, Zoh K-D, Cho J, Yoon Y (2015) Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review. J Ind Eng Chem 27:1–11. https://doi.org/10.1016/j.jiec.2014.12.035
Kamarudin NHN, Jalil AA, Triwahyono S, Salleh NFM, Karim AH, Mukti RR, Hameed BH, Ahmad A (2013) Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: effect on physicochemical properties. Micropor Mesopor Mater 180:235–241. https://doi.org/10.1016/j.micromeso.2013.06.041
Kamarudin NHN, Jalil AA, Triwahyono S, Sazegar MR, Hamdan S, Baba S, Ahmad A (2015) Elucidation of acid strength effect on ibuprofen adsorption and release by aluminated mesoporous silica nanoparticles. RSC Adv. 5(38):30023–30031. https://doi.org/10.1039/C4RA16761A
Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12(1):27–47. https://doi.org/10.1007/s10311-013-0428-0
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C (2022) Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent: a powerful approach in water treatment. Environ Res 203:111753. https://doi.org/10.1016/j.envres.2021.111753
Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpää M (2021) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J Clean Product 291:125880. https://doi.org/10.1016/j.jclepro.2021.125880
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-nooshabadi M, Asrami PN, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelec 184:113252. https://doi.org/10.1016/j.bios.2021.113252
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ Res 195:110809. https://doi.org/10.1016/j.envres.2021.110809
Kaur H, Bansiwal A, Hippargi G, Pophali GR (2018) Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: adsorption isotherms, kinetics and mechanism. Environ Sci Pollut Res Int 25(21):20473–20485. https://doi.org/10.1007/s11356-017-0054-7
Kebede TG, Dube S, Nindi MM (2019) Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. J Environ Chem Eng 7(5):103330. https://doi.org/10.1016/j.jece.2019.103330
Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. Comptes Rendus Chimie 19(8):963–970. https://doi.org/10.1016/j.crci.2016.05.005
Khadir A, Motamedi M, Negarestani M, Sillanpää M, Sasani M (2020) Preparation of a nano bio-composite based on cellulosic biomass and conducting polymeric nanoparticles for ibuprofen removal: kinetics, isotherms, and energy site distribution. Int J Biol Macromol 162:663–677. https://doi.org/10.1016/j.ijbiomac.2020.06.095
Khalaf S, Al-Rimawi F, Khamis M, Zimmerman D, Shuali U, Nir S, Scrano L, Bufo SA, Karaman R (2013) Efficiency of advanced wastewater treatment plant system and laboratory-scale micelle-clay filtration for the removal of ibuprofen residues. J Environ Sci Health Part B 48(9):814–821. https://doi.org/10.1080/03601234.2013.781372
Khalil AME, Memon FA, Tabish TA, Salmon D, Zhang S, Butler D (2020) Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chem Eng J 398:125440. https://doi.org/10.1016/j.cej.2020.125440
Khalil AME, Memon FA, Tabish TA, Fenton B, Salmon D, Zhang S, Butler D (2021) Performance evaluation of porous graphene as filter media for the removal of pharmaceutical/emerging contaminants from water and wastewater. Nanomater (Basel). https://doi.org/10.3390/nano11010079
Khoshkho SM, Tanhaei B, Ayati A, Kazemi M (2021) Preparation and characterization of ionic and non-ionic surfactants impregnated κ-carrageenan hydrogel beads for investigation of the adsorptive mechanism of cationic dye to develop for biomedical applications. J Mol Liq 324:115118. https://doi.org/10.1016/j.molliq.2020.115118
Kim S, Park CM, Jang A, Jang M, Hernández-Maldonado AJ, Yu M, Heo J, Yoon Y (2019) Removal of selected pharmaceuticals in an ultrafiltration-activated biochar hybrid system. J Memb Sci. https://doi.org/10.1016/j.memsci.2018.10.036
Kittappa S, Jang M, Ramalingam M, Ibrahim S (2020) Amine functionalized magnetic nano-composite materials for the removal of selected endocrine disrupting compounds and its mechanism study. J Environ Chem Eng 8(4):103839. https://doi.org/10.1016/j.jece.2020.103839
Kumar L, Ragunathan V, Chugh M, Bharadvaja N (2021) Nanomaterials for remediation of contaminants: a review. Environ Chem Lett 19(4):3139–3163. https://doi.org/10.1007/s10311-021-01212-z5
Kumar VVPN, Rajendran HK, Ray J, Narayanasamy S (2022) Sequestration and toxicological assessment of emerging contaminants with polypyrrole modified carboxymethyl cellulose (CMC/PPY): case of ibuprofen pharmaceutical drug. Int J Biol Macromol 221:547–557. https://doi.org/10.1016/j.ijbiomac.2022.09.046
Kurczewska J, Cegłowski M, Schroeder G (2020) PAMAM-halloysite Dunino hybrid as an effective adsorbent of ibuprofen and naproxen from aqueous solutions. Appl Clay Sci 190:105603. https://doi.org/10.1016/j.clay.2020.105603
Kusmierek K, Dabek L, Swiatkowski A (2020) Comparative study on the adsorption kinetics and equilibrium of common water contaminants onto bentonite. Desal Water Treat 186:373–381. https://doi.org/10.5004/dwt.2020.25476
Labuto G, Carvalho AP, Mestre AS, dos Santos MS, Modesto HR, Martins TD, Lemos SG, da Silva HDT, Carrilho ENVM, Carvalho WA (2022) Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite. Sustain Chem Pharm 28:100703. https://doi.org/10.1016/j.scp.2022.100703
Lee G, Yoo DK, Ahmed I, Lee HJ, Jhung SH (2023) Metal-organic frameworks composed of nitro groups: preparation and applications in adsorption and catalysis. Chem Eng J 451:138538. https://doi.org/10.1016/j.cej.2022.138538
Lestari WW, Arvinawati M, Martien R, Kusumaningsih T (2018) Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in Ibuprofen slow-release. Mater Chem Phys 204:141–146. https://doi.org/10.1016/j.matchemphys.2017.10.034
Lestari WW, Tedra RA, Rosari VA, Saraswati TE (2020) The novel composite material MOF-[Mg3(BTC)2]/GO/Fe3O4 and its use in slow-release ibuprofen. Appl Organometal Chem 34(8):e5670. https://doi.org/10.1002/aoc.5670
Li SQ, Zhang XD, Huang YM (2017) Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater 321:711–719. https://doi.org/10.1016/j.jhazmat.2016.09.065
Li Z, Gómez-Avilés A, Sellaoui L, Bedia J, Bonilla-Petriciolet A, Belver C (2019) Adsorption of ibuprofen on organo-sepiolite and on zeolite/sepiolite heterostructure: synthesis, characterization and statistical physics modeling. Chem Eng J 371:868–875. https://doi.org/10.1016/j.cej.2019.04.138
Liang Y, Feng L, Liu X, Zhao Y, Chen Q, Sui Z, Wang N (2021) Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning. Chem Eng J 404:127095. https://doi.org/10.1016/j.cej.2020.127095
Liao R, Li M, Li W, Lin X, Liu D, Wang L (2018) Efficient absorption of ibuprofen in aqueous solution using eco-friendly C3N4/soot composite. J Mater Sci 53(8):5929–5941. https://doi.org/10.1007/s10853-017-1963-z
Lin S, Zhao Y, Yun Y-S (2018) Highly effective removal of nonsteroidal anti-inflammatory pharmaceuticals from water by Zr(IV)-based metal-organic framework: adsorption performance and mechanisms. ACS Appl Mater Interfaces 10(33):28076–28085. https://doi.org/10.1021/acsami.8b08596
Lin L, Jiang W, Bechelany M, Nasr M, Jarvis J, Schaub T, Sapkota RR, Miele P, Wang H, Xu P (2019) Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: degradation products and mechanisms. Chemosphere 220:921–929. https://doi.org/10.1016/j.chemosphere.2018.12.184
Liu Y, Liu R, Li M, Yu F, He C (2019) Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohyd Polym 220:141–148. https://doi.org/10.1016/j.carbpol.2019.05.060
Liu D, Gu W, Zhou L, Wang L, Zhang J, Liu Y, Lei J (2022) Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem Eng J 427:131503. https://doi.org/10.1016/j.cej.2021.131503
Liyanage AS, Canaday S, Pittman CU, Mlsna T (2020) Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/Douglas fir biochar adsorbents. Chemosphere 258:127336. https://doi.org/10.1016/j.chemosphere.2020.127336
López YC, Viltres H, Gupta NK, Acevedo-Peña P, Leyva C, Ghaffari Y, Gupta A, Kim S, Bae J, Kim KS (2021) Transition metal-based metal–organic frameworks for environmental applications: a review. Environ Chem Lett 19(2):1295–1334. https://doi.org/10.1007/s10311-020-01119-1
Lotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A (2019) Synthesis and characterization of PAMAM/SiO2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 146:1150–1159. https://doi.org/10.1016/j.microc.2019.02.048
Lou Y, Tan FJ, Zeng R, Wang M, Li P, Xia S (2020) Preparation of cross-linked graphene oxide on polyethersulfone membrane for pharmaceuticals and personal care products removal. Polym. 12(9):1921. https://doi.org/10.3390/polym12091921
Lung I, Soran M-L, Stegarescu A, Opris O, Gutoiu S, Leostean C, Lazar MD, Kacso I, Silipas T-D, Porav AS (2021) Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J Hazard Mater 403:123528. https://doi.org/10.1016/j.jhazmat.2020.123528
Luo R, Li X, Xu H, Sun Y, Wu J (2020) Effects of temperature, solution pH, and ball-milling modification on the adsorption of non-steroidal anti-inflammatory drugs onto biochar. Bull Environ Contamin Toxic 105(3):422–427. https://doi.org/10.1007/s00128-020-02948-0
Ma L-J, Wang J, Han M, Jia J, Wu H-S, Zhang X (2019) Adsorption of multiple H2 molecules on the complex TiC6H6: an unusual combination of chemisorption and physisorption. Energy 171:315–325. https://doi.org/10.1016/j.energy.2019.01.018
Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K, Inamuddin, (2019) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17(1):65–121. https://doi.org/10.1007/s10311-018-0778-8
Madikizela LM, Chimuka L (2017) Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ Monit Assess 189(7):348. https://doi.org/10.1007/s10661-017-6069-1
Madima N, Mishra SB, Inamuddin I, Mishra AK (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater A review. Environ Chem Lett 18(4):1169–1191. https://doi.org/10.1007/s10311-020-01001-0
Magadini DL, Goes JI, Ortiz S, Lipscomb J, Pitiranggon M, Yan B (2020) Assessing the sorption of pharmaceuticals to microplastics through in-situ experiments in New York City waterways. Sci Total Environ. 729:138766. https://doi.org/10.1016/j.scitotenv.2020.138766
Malvar JL, Martín J, Orta MdM, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2020) Simultaneous and individual adsorption of ibuprofen metabolites by a modified montmorillonite. Appl Clay Sci 189:105529. https://doi.org/10.1016/j.clay.2020.105529
Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, Ahmad MN (2018) The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev Environ Sci Bio/Technol 17(1):109–145. https://doi.org/10.1007/s11157-017-9456-8
Mansouri H, Carmona RJ, Gomis-Berenguer A, Souissi-Najar S, Ouederni A, Ania CO (2015) Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J Colloid Interf Sci 449:252–260. https://doi.org/10.1016/j.jcis.2014.12.020
Marcelo LR, de Gois JS, da Silva AA, Cesar DV (2021) Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ Chem Lett 19(2):1229–1274. https://doi.org/10.1007/s10311-020-01134-2
Martín J, Orta MdM, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2018) Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ Res 164:488–494. https://doi.org/10.1016/j.envres.2018.03.037
Martín J, Orta MdM, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2019) Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Appl Clay Sci 171:29–37. https://doi.org/10.1016/j.clay.2019.02.002
Mashkoor F, Nasar A, Inamuddin (2020) Carbon nanotube-based adsorbents for the removal of dyes from waters: a review. Environ Chem Lett, 18(3):605–629 https://doi.org/10.1007/s10311-020-00970-6
Matějová L, Bednárek J, Tokarský J, Koutník I, Sokolová B, Cruz GJF (2022) Adsorption of the most common non-steroidal analgesics from aquatic environment on agricultural wastes-based activated carbons; experimental adsorption study supported by molecular modeling. Appl Surf Sci 605:154607. https://doi.org/10.1016/j.apsusc.2022.154607
Mellah A, Fernandes SPS, Rodríguez R, Otero J, Paz J, Cruces J, Medina DD, Djamila H, Espiña B, Salonen LM (2018) Adsorption of pharmaceutical pollutants from water using covalent organic frameworks. Chem Eur J 24(42):10601–10605. https://doi.org/10.1002/chem.201801649
Mercurio M, Izzo F, Langella A, Grifa C, Germinario C, Daković A, Aprea P, Pasquino R, Cappelletti P, Graziano FS, Gennaro Bd (2018) Surface-modified phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: an ibuprofen sodium salt trial. Am Mineralogist 103(5):700–710. https://doi.org/10.2138/am-2018-6328
Mestre AS, Pires J, Nogueira JMF, Carvalho AP (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45(10):1979–1988. https://doi.org/10.1016/j.carbon.2007.06.005
Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, Ania CO (2009) Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour Technol 100(5):1720–1726. https://doi.org/10.1016/j.biortech.2008.09.039
Mestre AS, Pires RA, Aroso I, Fernandes EM, Pinto ML, Reis RL, Andrade MA, Pires J, Silva SP, Carvalho AP (2014) Activated carbons prepared from industrial pre-treated cork: sustainable adsorbents for pharmaceutical compounds removal. Chem Eng J 253:408–417. https://doi.org/10.1016/j.cej.2014.05.051
Mestre AS, Hesse F, Freire C, Ania CO, Carvalho AP (2019) Chemically activated high grade nanoporous carbons from low density renewable biomass (Agave sisalana) for the removal of pharmaceuticals. J Colloid Interf Sci 536:681–693. https://doi.org/10.1016/j.jcis.2018.10.081
Michelon A, Bortoluz J, Raota CS, Giovanela M (2022) Agro-industrial residues as biosorbents for the removal of anti-inflammatories from aqueous matrices: an overview. Environ Adv 9:100261. https://doi.org/10.1016/j.envadv.2022.100261
Moghaddam AZ, Ghiamati E, Ayati A, Ganjali MR (2019) Application of the response surface methodology (RSM) for optimizing the adsorptive removal of chromate using a magnetic cross-linked chitosan nanocomposite. J Appl Polym Sci 136:47077. https://doi.org/10.1002/app.47077
Mohamad Nor N, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1(4):658–666. https://doi.org/10.1016/j.jece.2013.09.017
Mohd Zanuri NB, Bentley MG, Caldwell GS (2017) Assessing the impact of diclofenac, ibuprofen and sildenafil citrate (Viagra®) on the fertilisation biology of broadcast spawning marine invertebrates. Marine Environ Res 127:126–136. https://doi.org/10.1016/j.marenvres.2017.04.005
Mohseni-Bandpei A, Eslami A, Kazemian H, Zarrabi M, Al-Musawi TJ (2020) A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: characterization and optimization of the adsorption data using response surface methodology. Environ Technol Innov 18:100642. https://doi.org/10.1016/j.eti.2020.100642
Mojiri A, Andasht Kazeroon R, Gholami A (2019) Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: optimization by the artificial neural network. Water 11(3):551. https://doi.org/10.3390/w11030551
Mondal S, Aikat K, Halder G (2016) Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling. Ecolog Eng 92:158–172. https://doi.org/10.1016/j.ecoleng.2016.03.022
Mondal S, Bobde K, Aikat K, Halder G (2016) Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. J Environ Manage 182:581–594. https://doi.org/10.1016/j.jenvman.2016.08.018
Mondol MMH, Yoo DK, Jhung SH (2022) Adsorptive removal of carbamazepine and ibuprofen from aqueous solution using a defective Zr-based metal-organic framework. J Environ Chem Eng 10(6):108560. https://doi.org/10.1016/j.jece.2022.108560
Monisha RS, Mani RL, Sivaprakash B, Rajamohan N, Vo D-VN (2022) Green remediation of pharmaceutical wastes using biochar: a review. Environ Chem Lett 20(1):681–704. https://doi.org/10.1007/s10311-021-01348-y
Moreno-Pérez J, Pauletto PS, Cunha AM, Bonilla-Petriciolet Á, Salau NPG, Dotto GL (2021) Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloid Surf A: Physicochem Eng Asp 614:126170. https://doi.org/10.1016/j.colsurfa.2021.126170
Muñiz-González A-B (2021) Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: effects on Chironomus riparius. Environ Technol Innov 81:103537. https://doi.org/10.1016/j.etap.2020.103537
Naima A, Ammar F, Abdelkader O, Rachid C, Lynda H, Syafiuddin A, Boopathy R (2022) Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. Bioresour Technol 347:126685. https://doi.org/10.1016/j.biortech.2022.126685
Najafi M, Bastami TR, Binesh N, Ayati A, Emamverdi S (2022) Sono-sorption versus adsorption for the removal of congo red from aqueous solution using NiFeLDH/Au nanocomposite: kinetics, thermodynamics, isotherm studies, and optimization of process parameters. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.09.039
Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40(17):3297–3303. https://doi.org/10.1016/j.watres.2006.06.039
Nasrollahi N, Vatanpour V, Khataee A (2022) Removal of antibiotics from wastewaters by membrane technology: limitations, successes, and future improvements. Sci Total Environ. 838:156010. https://doi.org/10.1016/j.scitotenv.2022.156010
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Carbon-based sustainable nanomaterials for water treatment: state-of-art and future perspectives. Chemosphere 263:128005. https://doi.org/10.1016/j.chemosphere.2020.128005
Navikaite-Snipaitiene V, Rosliuk D, Almonaityte K, Rutkaite R, Vaskeliene V, Raisutis R (2022) Ultrasound-activated modified starch microgranules for removal of ibuprofen from aqueous media. Starch - Stärke 74(5–6):2100261. https://doi.org/10.1002/star.202100261
Nawaz M, Khan AA, Hussain A, Jang J, Jung H-Y, Lee DS (2020) Reduced graphene oxide−TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere 261:127702. https://doi.org/10.1016/j.chemosphere.2020.127702
Ndagijimana P, Liu X, Xu Q, Li Z, Pan B, Wang Y (2022) Simultaneous removal of ibuprofen and bisphenol A from aqueous solution by an enhanced cross-linked activated carbon and reduced graphene oxide composite. Sep Pur Technol 299:121681. https://doi.org/10.1016/j.seppur.2022.121681
Nguyen DTC, Le HTN, Do TS, Pham VT, Lam Tran D, Ho VTT, Tran TV, Nguyen DC, Nguyen TD, Bach LG, Ha HKP, Doan VT (2019) Metal-organic framework MIL-53(Fe) as an adsorbent for ibuprofen drug removal from aqueous solutions: response surface modeling and optimization. J Chem 2019:5602957. https://doi.org/10.3390/w1103055110.1155/2019/5602957
Nguyen DTC, Tran TV, Kumar PS, Din ATM, Jalil AA, Vo D-VN (2022) Invasive plants as biosorbents for environmental remediation: a review. Environ Chem Lett 20(2):1421–1451. https://doi.org/10.1007/s10311-021-01377-7
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV (2022) Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett 20(3):1929–1963. https://doi.org/10.1007/s10311-022-01416-x
Njaramba LK, Kim M, Yea Y, Yoon Y, Park CM (2023) Efficient adsorption of naproxen and ibuprofen by gelatin/zirconium-based metal–organic framework/sepiolite aerogels via synergistic mechanisms. Chem Eng J 452:139426. https://doi.org/10.1016/j.cej.2022.139426
Nourmoradi H, Moghadam KF, Jafari A, Kamarehie B (2018) Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent. J Environ Chem Eng 6(6):6807–6815. https://doi.org/10.1016/j.jece.2018.10.047
Oba, SN, Ighalo, JO, Aniagor, CO, Igwegbe, CA (2021) Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Sci Total Environ., 780:146608 doi https://doi.org/10.1016/j.scitotenv.2021.146608
Obradović M, Daković A, Smiljanić D, Ožegović M, Marković M, Rottinghaus GE, Krstić J (2022) Ibuprofen and diclofenac sodium adsorption onto functionalized minerals: equilibrium, kinetic and thermodynamic studies. Micropor Mesopor Mater 335:111795. https://doi.org/10.1016/j.micromeso.2022.111795
Ocampo-Perez R, Padilla-Ortega E, Medellin-Castillo NA, Coronado-Oyarvide P, Aguilar-Madera CG, Segovia-Sandoval SJ, Flores-Ramírez R, Parra-Marfil A (2019) Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci Total Environ 655:1397–1408. https://doi.org/10.1016/j.scitotenv.2018.11.283
Ojha A, Tiwary D, Oraon R, Singh P (2021) Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review. Environ Sci Pollut Res 28(24):30573–30594. https://doi.org/10.3390/w1103055110.1007/s11356-021-13939-x
Omorogie MO, Babalola JO, Ismaeel MO, McGettrick JD, Watson TM, Dawson DM, Carta M, Kuehnel MF (2021) Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2. Adv Powder Technol 32(3):866–874. https://doi.org/10.1016/j.apt.2021.01.031
Ondarts M, Reinert L, Guittonneau S, Baup S, Delpeux S, Lévêque J-M, Duclaux L (2018) Improving the adsorption kinetics of ibuprofen on an activated carbon fabric through ultrasound irradiation: simulation and experimental studies. Chem Eng J 343:163–172. https://doi.org/10.1016/j.cej.2018.02.062
Osman AI, Abd El-Monaem EM, Elgarahy AM, Aniagor CO, Hosny M, Farghali M, Rashad E, Ejimofor MI, Lopez-Maldonado EA, Ihara I, Yap PS, Rooney DW, Eltaweil AS (2023a) Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-023-01603-4
Osman AI, Elgarahy AM, Eltaweil AS, Abd El-Monaem EM, El-Aqapa HG, Park Y, Hwang Y, Ayati A, Farghali M, Ihara I, Al-Muhtaseb AaH, Rooney DW, Yap P-S, Sillanpää M (2023) Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ Chem Lett. https://doi.org/10.1007/s10311-023-01581-7
Osman AI, Farghali M, Ihara I, Elgarahy AM, Ayyad A, Mehta N, Ng KH, El-Monaem EMA, Eltaweil AS, Hosny M, Hamed SM, Fawzy S, Yap PS, Rooney DW (2023c) Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environ Chem Lett 21(3):1419–1476. https://doi.org/10.1007/s10311-023-01573-7
Oyetade OA, Martincigh BS, Skelton AA (2018) Interplay between electrostatic and hydrophobic interactions in the pH-dependent adsorption of ibuprofen onto acid-functionalized multiwalled carbon nanotubes. J Phys Chem C 122(39):22556–22568. https://doi.org/10.3390/w1103055110.1021/acs.jpcc.8b06841
Pakade VE, Tavengwa NT, Madikizela LM (2019) Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 9(45):26142–26164. https://doi.org/10.1039/C9RA05188K
Pap S, Taggart MA, Shearer L, Li Y, Radovic S, Turk Sekulic M (2021) Removal behaviour of NSAIDs from wastewater using a P-functionalised microporous carbon. Chemosphere 264:128439. https://doi.org/10.1016/j.chemosphere.2020.128439
Park CM, Heo J, Wang D, Su C, Yoon Y (2018) Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl Catal B Environ 225:91–99. https://doi.org/10.1016/j.apcatb.2017.11.058
Parlak C, Alver Ö (2019) Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: a comparative DFT study. J. Molecul. Struct. 1184:110–113. https://doi.org/10.1016/j.molstruc.2019.02.023
Pasquino R, Di Domenico M, Izzo F, Gaudino D, Vanzanella V, Grizzuti N, de Gennaro B (2016) Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems. Colloid Surf B 146:938–944. https://doi.org/10.1016/j.colsurfb.2016.07.039
Patel AK, Singhania RR, Pal A, Chen C-W, Pandey A, Dong C-D (2022) Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Sci Total Environ 817:153054. https://doi.org/10.1016/j.scitotenv.2022.153054
Peng X, Jiang Y, Chen Z, Osman AI, Farghali M, Rooney DW, Yap P-S (2023) Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environ Chem Lett 21(2):765–801. https://doi.org/10.1007/s10311-022-01551-5
Peralta ME, Mártire DO, Moreno MS, Parolo ME, Carlos L (2021) Versatile nanoadsorbents based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. J Environ Chem Eng 9(1):104841. https://doi.org/10.1016/j.jece.2020.104841
Pereira JM, Calisto V, Santos SM (2019) Computational optimization of bioadsorbents for the removal of pharmaceuticals from water. J. Mol. Liq. 279:669–676. https://doi.org/10.1016/j.molliq.2019.01.167
Pereira AKdS, Reis DT, Barbosa KM, Scheidt GN, da Costa LS, Santos LSS (2020) Antibacterial effects and ibuprofen release potential using chitosan microspheres loaded with silver nanoparticles. Carbohyd. Polym. 488:107891. https://doi.org/10.1016/j.carres.2019.107891
Phasuphan W, Praphairaksit N, Imyim A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J. Mol. Liq. 294:111554. https://doi.org/10.1016/j.molliq.2019.111554
Pires BC, Dutra FVA, Borges KB (2020) Synthesis of mesoporous magnetic polypyrrole and its application in studies of removal of acidic, neutral, and basic pharmaceuticals from aqueous medium. Environ Sci Pollut Res Int 27(6):6488–6504. https://doi.org/10.1007/s11356-019-07207-2
Placente D, Benedini LA, Baldini M, Laiuppa JA, Santillán GE, Messina PV (2018) Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int J Pharma 548(1):559–570. https://doi.org/10.1016/j.ijpharm.2018.07.036
Prasetya N, Gede Wenten I, Franzreb M, Wöll C (2023) Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): Comparison to activated carbon. Coordin Chem Rev 475:214877. https://doi.org/10.1016/j.ccr.2022.214877
Priyan VV, Narayanasamy S (2022) Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: an ecotoxicological assessment. Environ Toxicol Chem 94:103930. https://doi.org/10.1016/j.etap.2022.103930
Qamar SA, Qamar M, Basharat A, Bilal M, Cheng H, Iqbal HMN (2022) Alginate-based nano-adsorbent materials – Bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere 288:132618. https://doi.org/10.1016/j.chemosphere.2021.132618
Quintelas C, Mesquita DP, Torres AM, Costa I, Ferreira EC (2020) Degradation of widespread pharmaceuticals by activated sludge: kinetic study, toxicity assessment, and comparison with adsorption processes. J Water Proc Eng 33:101061. https://doi.org/10.1016/j.jwpe.2019.1010613
Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH (2018) Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies. Int J Environ Sci Technol 15(3):513–524. https://doi.org/10.1007/s13762-017-1393-0
Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH (2019) Fixed bed adsorption column studies and models for removal of ibuprofen from aqueous solution by strong adsorbent Nano-clay composite. J Environ Health Sci Eng 17(2):753–765. https://doi.org/10.1007/s40201-019-00392-9
Rahimzadeh G, Tajbakhsh M, Daraie M, Ayati A (2022) Heteropolyacid coupled with cyanoguanidine decorated magnetic chitosan as an efficient catalyst for the synthesis of pyranochromene derivatives. Sci Rep 12(1):17027. https://doi.org/10.1038/s41598-022-21196-2
Rainsford KD (2009) Ibuprofen: pharmacology, efficacy and safety. Inflammo Pharmacol 17:275–342
Rajab Asadi F, Hamzavi SF, Shahverdizadeh GH, Ilkhchi MG, Hosseinzadeh-Khanmiri R (2018) Dipeptide-functionalized MIL-101(Fe) as efficient material for ibuprofen delivery. Appl Organometal Chem 32(12):e4552. https://doi.org/10.1002/aoc.4552
Rameshwar SS, Sivaprakash B, Rajamohan N, Mohamed BA, Vo D-VN (2023) Remediation of tetracycline pollution using MXene and nano-zero-valent iron materials: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-023-01623-0
Ranjbari S, Tanhaei B, Ayati A, Sillanpää M (2019) Novel Aliquat-336 impregnated chitosan beads for the adsorptive removal of anionic azo dyes. Int J Biol Macromol 125:989–998. https://doi.org/10.1016/j.ijbiomac.2018.12.139
Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M (2020) Efficient Tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: mechanism, Kinetic, Isotherms and Thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F (2022) The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. Environ Res 204:111961. https://doi.org/10.1016/j.envres.2021.111961
Reza RA, Ahmaruzzaman M (2020) A facile approach for elimination of ibuprofen from wastewater: an experimental and theoretical study. Water Environ. J 34(S1):435–443. https://doi.org/10.1111/wej.12543
Reza RA, Ahmaruzzaman M, Sil AK, Gupta VK (2014) Comparative adsorption behavior of Ibuprofen and clofibric acid onto microwave assisted activated bamboo waste. Ind Eng Chem Res 53(22):9331–9339. https://doi.org/10.1021/ie404162p
Rocha LS, Pereira D, Sousa É, Otero M, Esteves VI, Calisto V (2020) Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: a review. Sci Total Environ. 718:137272. https://doi.org/10.1016/j.scitotenv.2020.137272
Rovani S, Censi MT, Pedrotti SL, Lima ÉC, Cataluña R, Fernandes AN (2014) Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J Hazard Mater 271:311–320. https://doi.org/10.1016/j.jhazmat.2014.02.004
Sahin OI, Saygi-Yalcin B, Saloglu D (2020) Adsorption of ibuprofen from wastewater using activated carbon and graphene oxide embedded chitosan-PVA: equilibrium, kinetics, and thermodynamic and optimization with central composite design. Desal Water Treatment 179:396–417. https://doi.org/10.5004/dwt.2020.25027
Sandberg T, Weinberger C, Şen Karaman D, Rosenholm JM (2018) Modeling of a hybrid Langmuir adsorption isotherm for describing interactions between drug molecules and silica surfaces. J Pharm Sci 107(5):1392–1397. https://doi.org/10.1016/j.xphs.2017.12.025
Sandoval-González A, Robles I, Pineda-Arellano CA, Martínez-Sánchez C (2022) Removal of anti-inflammatory drugs using activated carbon from agro-industrial origin: current advances in kinetics, isotherms, and thermodynamic studies. J Iran Chem Soc 19(10):4017–4033. https://doi.org/10.1007/s13738-022-02588-7
Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere 60(2):245–253. https://doi.org/10.1016/j.chemosphere.2004.12.042
Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci 162(1):39–58. https://doi.org/10.1016/j.cis.2010.12.004
Seo PW, Bhadra BN, Ahmed I, Khan NA, Jhung SH (2016) Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Sci Rep 6(1):34462. https://doi.org/10.1038/srep34462
Shaheen JF, Sizirici B, Yildiz I (2022) Fate, transport, and risk assessment of widely prescribed pharmaceuticals in terrestrial and aquatic systems: a review. Emerg. Contam. 8:216–228. https://doi.org/10.1016/j.emcon.2022.04.001
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M (2022) Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 366:120303. https://doi.org/10.1016/j.molliq.2022.120303
Shen T, Han T, Zhao Q, Ding F, Mao S, Gao M (2022) Efficient removal of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: adsorption studies and model calculations. Chemosphere 295:133846. https://doi.org/10.1016/j.chemosphere.2022.133846
Shin J, Lee Y-G, Lee S-H, Kim S, Ochir D, Park Y, Kim J, Chon K (2020) Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. J Hazard Mater 400:123102. https://doi.org/10.1016/j.jhazmat.2020.123102
Shin J, Kwak J, Lee Y-G, Kim S, Choi M, Bae S, Lee S-H, Park Y, Chon K (2021) Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π–π interactions. Environ Pollut 270:116244. https://doi.org/10.1016/j.envpol.2020.116244
Shin J, Kwak J, Kim S, Son C, Lee Y-G, Baek S, Park Y, Chae K-J, Yang E, Chon K (2022) Facilitated physisorption of ibuprofen on waste coffee residue biochars through simultaneous magnetization and activation in groundwater and lake water: adsorption mechanisms and reusability. J Environ Chem Eng 10(3):107914. https://doi.org/10.1016/j.jece.2022.107914
Show S, Mukherjee S, Devi MS, Karmakar B, Halder G (2021) Linear and non-linear analysis of Ibuprofen riddance efficacy by Terminalia catappa active biochar: equilibrium, kinetics, safe disposal, reusability and cost estimation. Proc Safe Environ Protect 147:942–964. https://doi.org/10.1016/j.psep.2021.01.024
Show S, Karmakar B, Halder G (2022) Sorptive uptake of anti-inflammatory drug ibuprofen by waste biomass–derived biochar: experimental and statistical analysis. Biomass Conver Bioref 12(9):3955–3973. https://doi.org/10.1007/s13399-020-00922-8
Show S, Sarkhel R, Halder G (2022) Elucidating sorptive eradication of ibuprofen using calcium chloride caged bentonite clay and acid activated alginate beads in a fixed bed upward flow column reactor. Sustain Chem Pharm 27:100698. https://doi.org/10.1016/j.scp.2022.100698
Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50(6):345–365. https://doi.org/10.1179/174328005X41168
Silva A, Coimbra RN, Escapa C, Figueiredo SA, Freitas OM, Otero M (2020) Green microalgae scenedesmus obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from Water Samples. Int J Environ Res Public Health, 17(10):3707 https://www.mdpi.com/1660-4601/17/10/3707
Singh S, Kumar V, Datta S, Dhanjal DS, Sharma K, Samuel J, Singh J (2020) Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ 709:135895. https://doi.org/10.1016/j.scitotenv.2019.135895
Sivarajasekar N, Mohanraj N, Sivamani S, Prakash Maran J, Ganesh Moorthy I, Balasubramani K (2018) Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation. Mater Today Proc 5(2):7264–7274. https://doi.org/10.1016/j.matpr.2017.11.394
Skwierawska A, Nowacka D, Kozłowska-Tylingo K (2022) Removal of nonsteroidal anti-inflammatory drugs and analgesics from wastewater by adsorption on cross-linked β-cyclodextrin. Water Res Ind 28:100186. https://doi.org/10.1016/j.wri.2022.100186
Smiljanić D, de Gennaro B, Daković A, Galzerano B, Germinario C, Izzo F, Rottinghaus GE, Langella A (2021) Removal of non-steroidal anti-inflammatory drugs from water by zeolite-rich composites: the interference of inorganic anions on the ibuprofen and naproxen adsorption. J Environ Manage 286:112168. https://doi.org/10.1016/j.jenvman.2021.112168
Sompornpailin D, Mongconpattarasuk P, Ratanatawanate C, Apiratikul R, Chu KH, Punyapalakul P (2022) Adsorption of nonsteroidal anti-inflammatory drugs onto composite beads of a 1D flexible framework MIL-53(Al): adsorption mechanisms and fixed-bed study. J Environ Chem Eng 10(4):108144. https://doi.org/10.1016/j.jece.2022.108144
Sophia A, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxic Environ Saf 150:1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026
Souza MPCd, Sábio RM, Ribeiro TdC, Santos AMd, Meneguin AB, Chorilli M (2020) Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 159:804–822. https://doi.org/10.1016/j.ijbiomac.2020.05.104
Sruthi L, Janani B, Sudheer Khan S (2021) Ibuprofen removal from aqueous solution via light-harvesting photocatalysis by nano-heterojunctions: a review. Sep Pur Technol 279:119709. https://doi.org/10.1016/j.seppur.2021.119709
Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262:128322. https://doi.org/10.1016/j.chemosphere.2020.128322
Sun W, Li H, Li H, Li S, Cao X (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation. Chem Eng J 360:645–653. https://doi.org/10.1016/j.cej.2018.12.021
Suttiruengwong S, Pivsa-Art S, Chareonpanich M (2018) Hydrophilic and hydrophobic mesoporous silica derived from rice husk ash as a potential drug carrier. Mater (Basel). https://doi.org/10.3390/ma11071142
Tabatabaeian K, Simayee M, Fallah Shojaie A, Mashayekhi F, Hadavi M (2020) The effect of silica coating on the drug release profile and biocompatibility of nano-MOF-5. J Sci Islam Rep Iran 31(1):51–62. https://doi.org/10.22059/jsciences.2020.285236.1007428
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S (2022) Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. Environ Res 204(Part A):111965. https://doi.org/10.1016/j.envres.2021.111965
Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valero JR (2016) Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci Total Environ 547:60–77. https://doi.org/10.1016/j.scitotenv.2015.12.139
Takam B, Tarkwa J-B, Acayanka E, Nzali S, Chesseu DM, Kamgang GY, Laminsi S (2020) Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity. Environ Sci Pollut Res 27(16):20500–20515. https://doi.org/10.1007/s11356-020-08536-3
Tan D, Yuan P, Annabi-Bergaya F, Yu H, Liu D, Liu H, He H (2013) Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Micropor Mesopor Mater 179:89–98. https://doi.org/10.1016/j.micromeso.2013.05.007
Tanhaei B, Ayati A, Lahtinen M, Sillanpää M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption. Chem Eng J 259:1–10. https://doi.org/10.1016/j.cej.2014.07.109
Tanhaei B, Ayati A, Sillanpää M (2019) Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: kinetic, thermodynamic and isothermal studies. Int J Biol Macromol 121:1126–1134. https://doi.org/10.1016/j.ijbiomac.2018.10.137
Tanhaei B, Ayati A, Iakovleva E, Sillanpää M (2020) Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: synthesis, characterization and adsorption study. Int J Biol Macromol 164:3621–3631. https://doi.org/10.1016/j.ijbiomac.2020.08.207
Taoufik N, Boumya W, Janani FZ, Elhalil A, Mahjoubi FZ, barka, N, (2020) Removal of emerging pharmaceutical pollutants: a systematic mapping study review. J Environ Chem Eng 8(5):104251. https://doi.org/10.1016/j.jece.2020.104251
Tee GT, Gok XY, Yong WF (2022) Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review. Environ Res 212:113248. https://doi.org/10.1016/j.envres.2022.113248
Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64(3):833–867. https://doi.org/10.1021/acs.jced.8b01057
Tian W, Lin J, Zhang H, Duan X, Wang H, Sun H, Wang S (2022) Kinetics and mechanism of synergistic adsorption and persulfate activation by N-doped porous carbon for antibiotics removals in single and binary solutions. J Hazard Mater 423:127083. https://doi.org/10.1016/j.jhazmat.2021.127083
Titchou FE, Zazou H, Afanga H, El Gaayda J, Akbour RA, Hamdani M (2021) Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw Sustain Dev 13:100575. https://doi.org/10.1016/j.gsd.2021.100575
Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol 224:1–12. https://doi.org/10.1016/j.biortech.2016.11.042
Torrellas SÁ, García Lovera R, Escalona N, Sepúlveda C, Sotelo JL, García J (2015) Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem Eng J 279:788–798. https://doi.org/10.1016/j.cej.2015.05.104
Trzeciak K, Kaźmierski S, Wielgus E, Potrzebowski MJ (2020) DiSupLo - New extremely easy and efficient method for loading of active pharmaceutical ingredients into the pores of MCM-41 mesoporous silica particles. Micropor Mesopor Mater 308:110506. https://doi.org/10.1016/j.micromeso.2020.110506
Tseng LY, You C, Vu C, Chistolini MK, Wang CY, Mast K, Luo F, Asvapathanagul P, Gedalanga PB, Eusebi AL, Gorbi S, Pittura L, Fatone F (2022) Adsorption of contaminants of emerging concern (CECs) with varying hydrophobicity on macro- and microplastic polyvinyl chloride, polyethylene, and polystyrene: kinetics and potential mechanisms. Water 14(16):2581. https://doi.org/10.3390/w14162581
Turk Sekulic M, Boskovic N, Slavkovic A, Garunovic J, Kolakovic S, Pap S (2019) Surface functionalised adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Proc Safe Environ Protect 125:50–63. https://doi.org/10.1016/j.psep.2019.03.007
Ulfa M, Iswanti Y (2020) Ibuprofen adsorption study by langmuir, freundlich, temkin and dubinin-radushkevich models using nano zinc oxide from mild hydrothermal condition. IOP Conf Series: Mater Sci Eng. 833(1):012096. https://doi.org/10.1088/1757-899X/833/1/012096
Ulfa M, Aristia KS, Prasetyoko D (2018) Synthesis of mesoporous silica materials via dual templating method from starch of waste rice and their application for drug delivery system. AIP Conference Proceed 2049(1):020002. https://doi.org/10.1063/1.5082407
Ulfa M, Sari AY, Prasetyoko D (2018) Synthesis of unique natural silica (UNS) material via dual co-templating method using starch of waste rice-gelatin composite and their performance in drug delivery system. AIP Conference Proceed 2049(1):020003. https://doi.org/10.1063/1.5082408
Ulfa M, Saraswati TE, Mulyani B (2019) ) Adsorption of ibuprofen molecule onto mesoporous silica SBA-15 loaded by iron particles using arc discharge treatment. IOP Conf Ser: Mater Sci Eng 509:012073. https://doi.org/10.1088/1757-899X/509/1/012073
Ulfa M, Worabay NS, Pradipta MF, Prasetyoko D (2019) Removal of ibuprofen from aqueous solutions by adsorption on tiny zinc oxide sheet-like structure. AIP Conf Proc 2194(1):020131. https://doi.org/10.1063/1.5139863
Ulfa M, Fadhila YLE, Prasetyoko D (2020) Activation of carbon at different concentration microsphere adsorbent and its application for ibuprofen adsorption. J Phys: Conf Ser 1567(4):042008. https://doi.org/10.1088/1742-6596/1567/4/042008
Ulfa M, Gumilar IM, Prasetyoko D (2020) Alkaline activation of marble-like carbon structure and it’s application for inflammatory adsorption. J Phys: Conf Ser 1503:012028. https://doi.org/10.1088/1742-6596/1503/1/012028
Van Limbergen T, Roegiers IH, Bonné R, Mare F, Haeldermans T, Joos B, Nouwen O, Manca JV, Vangronsveld J, Thijs S (2022) Characterisation of two wood-waste and coffee bean husk biochars for the removal of micropollutants from water. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.814267
Van Tran T, Cam Nguyen DT, Le HTN, Nguyen OTK, Nguyen VH, Nguyen TT, Bach LG, Nguyen TD (2019) A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water Royal Soc. Open Sci 6(5):190058. https://doi.org/10.1098/rsos.190058
Van Tran T, Nguyen DTC, Le HTN, Bach LG, Vo D-VN, Dao T-UT, Lim KT, Nguyen TD (2019) Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. J Environ Chem Eng 7(5):103356. https://doi.org/10.1016/j.jece.2019.103356
Varghese RT, Cherian RM, Antony T, Tharayil A, Das H, Kargarzadeh H, Chirayil CJ, Thomas S (2022) A review on the best bioadsorbent membrane- nanocellulose for effective removal of pollutants from aqueous solutions. Carbohydr Polym Technol Appl 3:100209. https://doi.org/10.1016/j.carpta.2022.100209
Vargues F, Brion MA, Rosa da Costa AM, Moreira JA, Ribau Teixeira M (2021) Development of a magnetic activated carbon adsorbent for the removal of common pharmaceuticals in wastewater treatment. Int J Environ Sci Technol 18(9):2805–2818. https://doi.org/10.1007/s13762-020-03029-9
Vicente-Martínez Y, Caravaca M, Soto-Meca A, Solana-González R (2020) Magnetic core-modified silver nanoparticles for ibuprofen removal: an emerging pollutant in waters. Sci Rep 10(1):18288. https://doi.org/10.1038/s41598-020-75223-1
Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39(21):8220–8226. https://doi.org/10.1021/es051124k
Villabona-Ortíza Á, Tejada-Tovara C, Ortega-Torob R (2021) Kinetics and adsorption isotherms of the removal of ibuprofen on a porous adsorbent made from agroindustrial waste. Desal Water Treatment 209:316–323. https://doi.org/10.5004/dwt.2021.26538
Wang J, Yang F (2021) Preparation of 2-hydroxypropyl-β-cyclodextrin polymers crosslinked by poly(acrylic acid) for efficient removal of ibuprofen. Mater. Lett. 284:128882. https://doi.org/10.1016/j.matlet.2020.128882
Wang Z, Huang Q, Yu Y, Wang C, Ou W, Peng X (2013) Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water China. Environ Geochem Health 35(5):683–691. https://doi.org/10.1007/s10653-013-9551-x
Wang Q, Jin X, Bai S, Sun J (2017) Polyacrylic acid (PAA)- surface grafted dense nanosilica spheres for ibuprofen delivery. J Control Release 259:e107–e108. https://doi.org/10.1016/j.jconrel.2017.03.226
Wang X, Zhuo N, Fu C, Tian Z, Li H, Zhang J, Wu W, Yang Z, Yang W (2017) Enhanced selective adsorption of benzotriazole onto nanosized zeolitic imidazolate frameworks confined in polystyrene anion exchanger. Chem Eng J 328:816–824. https://doi.org/10.1016/j.cej.2017.07.095
Wang X, Yin R, Zeng L, Zhu M (2019) A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ Pollut 253:100–110. https://doi.org/10.1016/j.envpol.2019.06.067
Wang Y, Li W, Liu T, Xu L, Guo Y, Ke J, Li S, Li H (2019) Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mater Sci Eng C 103:109737. https://doi.org/10.1016/j.msec.2019.109737
Wang D, Chen X, Feng J, Sun M (2022) Recent advances of ordered mesoporous silica materials for solid-phase extraction. J Chromatogr A 1675:463157. https://doi.org/10.1016/j.chroma.2022.463157
Wasilewska M, Deryło-Marczewska A (2022) Adsorption of non-steroidal anti-inflammatory drugs on alginate-carbon composites-equilibrium and kinetics. Materials 15(17):6049. https://doi.org/10.3390/ma15176049
Wazzan N (2021) Adsorption of non-steroidal anti-inflammatory drugs (NSAIDs) on nanographene surface: density functional theory study. Arab J Chem 14(3):103002. https://doi.org/10.1016/j.arabjc.2021.103002
Wei J, Zhang W, Pan W, Li C, Sun W (2018) Experimental and theoretical investigations on Se(iv) and Se(vi) adsorption to UiO-66-based metal–organic frameworks. Environ Sci Nano 5(6):1441–1453. https://doi.org/10.1039/C8EN00180D
Wong S, Ngadi N, Inuwa IM, Hassan O (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. J Clean Prod 175:361–375. https://doi.org/10.1016/j.jclepro.2017.12.059
Wu C, Witter JD, Spongberg AL, Czajkowski KP (2009) Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin. Water Res 43(14):3407–3416. https://doi.org/10.1016/j.watres.2009.05.014
Wu T, Prasetya N, Li K (2022) Re-generable and re-synthesisable micro-structured MIL-53 Rachig Rings for ibuprofen removal. J Environ Chem Eng 10(3):107432. https://doi.org/10.1016/j.jece.2022.107432
Xiong P, Zhang H, Li G, Liao C, Jiang G (2021) Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101(Fe). Sci Total Environ 797:149179. https://doi.org/10.1016/j.scitotenv.2021.149179
Xu T, Hou X, Liu S, Liu B (2018) One-step synthesis of magnetic and porous Ni@MOF-74(Ni) composite. Micropor Mesopor Mater 259:178–183. https://doi.org/10.1016/j.micromeso.2017.10.014
Yan M, Wu Y (2020) Fabrication and evaluation of bioinspired pDA@TiO2-based ibuprofen-imprinted nanocomposite membranes for highly selective adsorption and separation applications. New J Chem 44(25):10703–10712. https://doi.org/10.1039/D0NJ01836H
Yang X, Wang J, El-Sherbeeny AM, AlHammadi AA, Park W-H, Abukhadra MR (2022) Insight into the adsorption and oxidation activity of a ZnO/piezoelectric quartz core-shell for enhanced decontamination of ibuprofen: steric, energetic, and oxidation studies. Chem Eng J 431:134312. https://doi.org/10.1016/j.cej.2021.134312
Yazidi A, Sellaoui L, Dotto GL, Bonilla-Petriciolet A, Fröhlich AC, Lamine AB (2019) Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models. J Mol Liq 283:276–286. https://doi.org/10.1016/j.molliq.2019.03.101
Yin R, Sun J, Xiang Y, Shang C (2018) Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: Adsorption and persulfate-based advanced oxidation. J Clean Prod 178:441–448. https://doi.org/10.1016/j.jclepro.2018.01.005
Yu F, Bai X, Liang M, Ma J (2021) Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem Eng J 405:126960. https://doi.org/10.1016/j.cej.2020.126960
Yu M, Li H, Xie J, Xu Y, Lu X (2022) A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 236:122875. https://doi.org/10.1016/j.talanta.2021.122875
Yudha SP, Tekasakul S, Phoungthong K, Chuenchom L (2019) Green synthesis of low-cost and eco-friendly adsorbent for dye and pharmaceutical adsorption: kinetic, isotherm, thermodynamic and regeneration studies. Mater Res Express 6(12):125526. https://doi.org/10.1088/2053-1591/ab58ae
Zare EN, Fallah Z, Le VT, Doan V-D, Mudhoo A, Joo S-W, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS (2022) Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. Environ Chem Lett 20(4):2629–2664. https://doi.org/10.1007/s10311-022-01439-4
Zeng H, Gao M, Shen T, Ding F (2018) Organo silica nanosheets with gemini surfactants for rapid adsorption of ibuprofen from aqueous solutions. J Taiwan Inst Chem Eng 93:329–335. https://doi.org/10.1016/j.jtice.2018.07.038
Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66(6):1057–1069. https://doi.org/10.1016/j.chemosphere.2006.06.067
Zhang W, Gago-Ferrero P, Gao Q, Ahrens L, Blum K, Rostvall A, Björlenius B, Andersson PL, Wiberg K, Haglund P, Renman G (2019) Evaluation of five filter media in column experiment on the removal of selected organic micropollutants and phosphorus from household wastewater. J. Environ. Manag. 246:920–928. https://doi.org/10.1016/j.jenvman.2019.05.137
Zhang G, Li S, Shuang C, Mu Y, Li A, Tan L (2020) The effect of incorporating inorganic materials into quaternized polyacrylic polymer on its mechanical strength and adsorption behaviour for ibuprofen removal. Sci Rep 10(1):5188. https://doi.org/10.1038/s41598-020-62153-1
Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y, Zhou J, Xu J (2016) Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J Hazard Mater 310:235–245. https://doi.org/10.1016/j.jhazmat.2016.02.045
Zhao Y, Choi J-W, Lin S, Kim J-A, Cho C-W, Yun Y-S (2018) Experimental and QSAR studies on adsorptive interaction of anionic nonsteroidal anti-inflammatory drugs with activated charcoal. Chemosphere 212:620–628. https://doi.org/10.1016/j.chemosphere.2018.08.115
Zhao R, Ma T, Li S, Tian Y, Zhu G (2019) Porous aromatic framework modified electrospun fiber membrane as a highly efficient and reusable adsorbent for pharmaceuticals and personal care products removal. ACS Appl Mater Interfaces 11(18):16662–16673. https://doi.org/10.1021/acsami.9b04326
Zheng Y, Cheng B, Fan J, Yu J, Ho W (2021) Review on nickel-based adsorption materials for Congo red. J Hazard Mater 403:123559. https://doi.org/10.1016/j.jhazmat.2020.123559
Żółtowska-Aksamitowska S, Bartczak P, Zembrzuska J, Jesionowski T (2018) Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. Sci Total Environ 612:1223–1233. https://doi.org/10.1016/j.scitotenv.2017.09.037