A Hydrangea‐Like Superstructure of Open Carbon Cages with Hierarchical Porosity and Highly Active Metal Sites

Advanced Materials - Tập 31 Số 46 - 2019
Chun‐Chao Hou1, Lianli Zou1, Qiang Xü1
1AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan

Tóm tắt

Abstract

Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.

Từ khóa


Tài liệu tham khảo

10.1021/acs.chemrev.7b00689

10.1039/C5CS00670H

10.1007/s41918-019-00033-7

10.1039/C8TA00010G

10.1002/adma.201806312

10.1016/j.cej.2017.08.024

10.1002/adma.201700470

10.1021/acs.accounts.6b00541

10.1002/adma.200902795

10.1038/nmat4317

10.1002/anie.201708385

10.1002/ange.201813494

10.1016/j.nanoen.2014.11.062

10.1021/ja5082553

10.1002/adma.201600979

10.1002/smll.201803500

10.1021/jacs.9b02417

10.1126/science.1230444

10.1002/anie.200300610

10.1038/nature19763

10.1002/aenm.201801307

10.1016/j.enchem.2019.100001

10.1021/ja5084128

10.1002/adma.201900440

10.1039/C8EE02694G

10.1002/anie.201811126

10.1073/pnas.0602439103

10.1126/science.1152516

10.1021/jp052494y

10.1063/1.2971180

10.1007/s13369-018-03696-4

10.1016/j.jallcom.2018.03.150

10.1021/acscatal.6b02966

10.1021/jacs.8b07294

10.1021/acscatal.7b03270

10.1039/C9TA00607A

10.1021/ja511539a

10.1021/jacs.7b10385

10.1002/smll.201805324

10.1002/anie.201810175

10.1002/anie.201902109

10.1039/C6SC04903F

10.1002/adma.201700874

10.1038/s41467-019-09394-5

10.1021/jacs.5b00281

10.1002/cssc.201600592

10.1021/acsmaterialslett.9b00052

10.1039/C8EE02656D

10.1002/aenm.201801956

10.1039/C8CC00988K

Bard A. J., 2001, Electrochemical Methods: Fundamentals and Applications

10.1021/acs.langmuir.8b00548

10.1002/adma.201703711

10.1002/adfm.201803329

10.1002/adma.201703185

10.1002/adma.201808267