Optimal control of spins by Analytical Lie Algebraic Derivatives

Automatica - Tập 129 - Trang 109611 - 2021
Mohammadali Foroozandeh1, Pranav Singh2
1Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
2Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Tài liệu tham khảo

Amari, 1998, Natural Gradient works efficiently in learning, Neural Computation, 10, 251, 10.1162/089976698300017746 Augier, 2018, Adiabatic ensemble control of a continuum of quantum systems, SIAM Journal on Control and Optimization, 56, 4045, 10.1137/17M1140327 Baum, 1983, Broadband population inversion by phase modulated pulses, Journal of Chemical Physics, 79, 4643, 10.1063/1.446381 Baum, 1985, Broadband and adiabatic inversion of a two-level system by phase-modulated pulses, Physical Review A, 32, 3435, 10.1103/PhysRevA.32.3435 Bonnard, 2012, Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance, IEEE Transactions on Automatic Control, 57, 1957, 10.1109/TAC.2012.2195859 Bonnard, 2012, A review of geometric optimal control for quantum systems in nuclear magnetic resonance, Advances in Mathematical Physics, 2012, 1, 10.1155/2012/857493 Brif, 2014, Exploring adiabatic quantum trajectories via optimal control, New Journal of Physics, 16, 10.1088/1367-2630/16/6/065013 Cartis, 2019, Improving the flexibility and robustness of model-based derivative-free optimization solvers, ACM Transactions on Mathematical Software, 45, 1, 10.1145/3338517 Chou, 2015, Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond, Physical Review A, 91, 10.1103/PhysRevA.91.052315 Coudert, 2018, Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses, Journal of Chemical Physics, 148, 10.1063/1.5018914 de Fouquieres, 2011, Second order gradient ascent pulse engineering, Journal of Magnetic Resonance, 212, 412, 10.1016/j.jmr.2011.07.023 Dirr, 2006, Spin dynamics: A paradigm for time optimal control on compact Lie groups, Journal of Global Optimization, 35, 443, 10.1007/s10898-005-6015-6 Doll, 2014, Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses, Journal of Magnetic Resonance, 246, 18, 10.1016/j.jmr.2014.06.016 Drummond, 2000, Application of Lie algebras to visual servoing, International Journal of Computer Vision, 37, 21, 10.1023/A:1008125412549 Eitan, 2011, Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods, Physical Review A, 83, 10.1103/PhysRevA.83.053426 Foroozandeh, 2019, Improved ultra-broadband chirp excitation, Journal of Magnetic Resonance, 302, 28, 10.1016/j.jmr.2019.03.007 Fu, 1995, Broadband decoupling in NMR with frequency-modulated ‘chirp’ pulses, Chemical Physics Letters, 245, 415, 10.1016/0009-2614(95)01037-A Fujiwara, 1990, Optimized frequency/phase-modulated broadband inversion pulses, Journal of Magnetic Resonance, 86, 584 Gallego, 2015, A compact formula for the derivative of a 3-d rotation in exponential coordinates., Journal of Mathematical Imaging and Vision, 51, 378, 10.1007/s10851-014-0528-x Glaser, 2015, Training Schrödinger’s cat: quantum optimal control, European Physical Journal D, 69, 10.1140/epjd/e2015-60464-1 Goodwin, 2016, Modified Newton-Raphson GRAPE methods for optimal control of spin systems, Journal of Chemical Physics, 144, 10.1063/1.4949534 Goodwin, 2018, Feedback control optimisation of ESR experiments, Journal of Magnetic Resonance, 297, 9, 10.1016/j.jmr.2018.09.009 Jurdjevic, 2011, Optimal control on Lie groups and integrable Hamiltonian systems, Regular and Chaotic Dynamics, 16, 514, 10.1134/S156035471105008X Kato, 1950, On the Adiabatic theorem of quantum mechanics, Journal of the Physical Society of Japan, 5, 435, 10.1143/JPSJ.5.435 Khaneja, 2017, Chirp excitation, Journal of Magnetic Resonance, 282, 32, 10.1016/j.jmr.2017.07.003 Khaneja, 2001, Time optimal control in spin systems, Physical Review A, 63, 1, 10.1103/PhysRevA.63.032308 Khaneja, 2002, Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer, Physical Review A, 65, 1, 10.1103/PhysRevA.65.032301 Khaneja, 2002, Subriemannian geodesics and optimal control of spin systems, Proceedings of the American Control Conference, 4, 2806 Khaneja, 2005, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance, 172, 296, 10.1016/j.jmr.2004.11.004 Khaneja, 2003, Optimal control of spin dynamics in the presence of relaxation, Journal of Magnetic Resonance, 162, 311, 10.1016/S1090-7807(03)00003-X Kobzar, 2012, Exploring the limits of broadband 90 degrees and 180 degrees universal rotation pulses, Journal of Magnetic Resonance, 225, 142, 10.1016/j.jmr.2012.09.013 Kobzar, 2005, Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset, Journal of Magnetic Resonance, 173, 229, 10.1016/j.jmr.2004.12.005 Kosmann-Schwarzbach, 2010 Kunz, 1986, Use of frequency-modulated radiofrequency pulses in MR imaging experiments, Magnetic Resonance in Medicine, 3, 377, 10.1002/mrm.1910030303 Kuprov, 2013, Spin system trajectory analysis under optimal control pulses, Journal of Magnetic Resonance, 233, 107, 10.1016/j.jmr.2013.02.012 Kupče, 1995, Adiabatic pulses for wideband inversion and broadband decoupling, Journal of Magnetic Resonance, Series A, 115, 273, 10.1006/jmra.1995.1179 Levitt, 1986, Composite pulses, Progress in Nuclear Magnetic Resonance Spectroscopy, 18, 61, 10.1016/0079-6565(86)80005-X Levitt, 1983, Composite pulses constructed by a recursive expansion procedure, Journal of Magnetic Resonance, 55, 247 Levitt, 1984, Composite pulse excitation in three-level systems, Journal of Chemical Physics, 80, 3064, 10.1063/1.447142 Lu, 2017, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, Npj Quantum Information, 3, 45, 10.1038/s41534-017-0045-z Meister, 2014, Optimal control theory with arbitrary superpositions of waveforms, Journal of Physics A, 47, 10.1088/1751-8113/47/49/495002 Nishimori, Y. (1999). Learning algorithm for independent component analysis by geodesic flows on orthogonal group. In Proc. Int. Jt. Conf. neural Netw., Vol. 2 (pp. 933–938). Nocedal, 2006 Plumbley, 2004, Lie group Methods for optimization with orthogonality constraints, 1245 Power, 2016, Increasing the quantitative bandwidth of NMR measurements, Chemical Communications, 52, 2916, 10.1039/C5CC10206E Rasanen, 2007, Optimal control of quantum rings by terahertz laser pulses, Physical Review Letters, 98, 10.1103/PhysRevLett.98.157404 Rodrigues, 1840, Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire, Journal de Matheématiques Pures et Appliquées, 380 Rossmann, 2006 Saywell, 2018, Optimal control of mirror pulses for cold-atom interferometry, Physical Review A, 98, 10.1103/PhysRevA.98.023625 Schirmer, 2011, Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered, New Journal of Physics, 13, 10.1088/1367-2630/13/7/073029 Schur, 1891, Zur Theorie der endlichen Transformationsgruppen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 4, 15 Shaka, 1983, Composite pulses with dual compensation, Journal of Magnetic Resonance, 55, 487 Shaka, 1987, Symmetric phase-alternating composite pulses, Journal of Magnetic Resonance, 71, 495 Spindler, 2013, Optimal control on lie groups: Theory and applications, WSEAS Transactions on Mathematics, 12, 531 Taylor, 1994 Terzakis, 2018, Modified rodrigues parameters: An efficient representation of orientation in 3D vision and graphics, Journal of Mathematical Imaging and Vision, 60, 422, 10.1007/s10851-017-0765-x Tian, 2019, Optimal quantum optical control of spin in diamond, Physical Review A, 100, 10.1103/PhysRevA.100.012110 Tosner, 2009, Optimal control in NMR spectroscopy: numerical implementation in SIMPSON, Journal of Magnetic Resonance, 197, 120, 10.1016/j.jmr.2008.11.020 Tuzel, 2005, Simultaneous multiple 3D motion estimation via mode finding on Lie groups, 18 Tycko, 1985, Composite pulses without phase distortion, Journal of Magnetic Resonance, 61, 90 Van Reeth, E., Rafiney, H., Tesch, M., Glaser, S. J., & Sugny, D. (2016). Optimizing MRI contrast with B1 pulses using optimal control theory. In Proc. IEEE Int. Symp. Biomed. imaging (pp. 310–313). Walsh, G. C., Montgomery, R., & Sastry, S. S. (1994). Optimal path planning on matrix lie groups. In Proc. IEEE Conf. Decis. control, Vol. 2 (pp. 1258–1263). Woit, 2017 Zhao, 2008, Coherent and optimal control of adiabatic motion of ions in a trap, Physical Review A, 77, 10.1103/PhysRevA.77.012338