Optimal control of spins by Analytical Lie Algebraic Derivatives
Tài liệu tham khảo
Amari, 1998, Natural Gradient works efficiently in learning, Neural Computation, 10, 251, 10.1162/089976698300017746
Augier, 2018, Adiabatic ensemble control of a continuum of quantum systems, SIAM Journal on Control and Optimization, 56, 4045, 10.1137/17M1140327
Baum, 1983, Broadband population inversion by phase modulated pulses, Journal of Chemical Physics, 79, 4643, 10.1063/1.446381
Baum, 1985, Broadband and adiabatic inversion of a two-level system by phase-modulated pulses, Physical Review A, 32, 3435, 10.1103/PhysRevA.32.3435
Bonnard, 2012, Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance, IEEE Transactions on Automatic Control, 57, 1957, 10.1109/TAC.2012.2195859
Bonnard, 2012, A review of geometric optimal control for quantum systems in nuclear magnetic resonance, Advances in Mathematical Physics, 2012, 1, 10.1155/2012/857493
Brif, 2014, Exploring adiabatic quantum trajectories via optimal control, New Journal of Physics, 16, 10.1088/1367-2630/16/6/065013
Cartis, 2019, Improving the flexibility and robustness of model-based derivative-free optimization solvers, ACM Transactions on Mathematical Software, 45, 1, 10.1145/3338517
Chou, 2015, Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond, Physical Review A, 91, 10.1103/PhysRevA.91.052315
Coudert, 2018, Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses, Journal of Chemical Physics, 148, 10.1063/1.5018914
de Fouquieres, 2011, Second order gradient ascent pulse engineering, Journal of Magnetic Resonance, 212, 412, 10.1016/j.jmr.2011.07.023
Dirr, 2006, Spin dynamics: A paradigm for time optimal control on compact Lie groups, Journal of Global Optimization, 35, 443, 10.1007/s10898-005-6015-6
Doll, 2014, Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses, Journal of Magnetic Resonance, 246, 18, 10.1016/j.jmr.2014.06.016
Drummond, 2000, Application of Lie algebras to visual servoing, International Journal of Computer Vision, 37, 21, 10.1023/A:1008125412549
Eitan, 2011, Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods, Physical Review A, 83, 10.1103/PhysRevA.83.053426
Foroozandeh, 2019, Improved ultra-broadband chirp excitation, Journal of Magnetic Resonance, 302, 28, 10.1016/j.jmr.2019.03.007
Fu, 1995, Broadband decoupling in NMR with frequency-modulated ‘chirp’ pulses, Chemical Physics Letters, 245, 415, 10.1016/0009-2614(95)01037-A
Fujiwara, 1990, Optimized frequency/phase-modulated broadband inversion pulses, Journal of Magnetic Resonance, 86, 584
Gallego, 2015, A compact formula for the derivative of a 3-d rotation in exponential coordinates., Journal of Mathematical Imaging and Vision, 51, 378, 10.1007/s10851-014-0528-x
Glaser, 2015, Training Schrödinger’s cat: quantum optimal control, European Physical Journal D, 69, 10.1140/epjd/e2015-60464-1
Goodwin, 2016, Modified Newton-Raphson GRAPE methods for optimal control of spin systems, Journal of Chemical Physics, 144, 10.1063/1.4949534
Goodwin, 2018, Feedback control optimisation of ESR experiments, Journal of Magnetic Resonance, 297, 9, 10.1016/j.jmr.2018.09.009
Jurdjevic, 2011, Optimal control on Lie groups and integrable Hamiltonian systems, Regular and Chaotic Dynamics, 16, 514, 10.1134/S156035471105008X
Kato, 1950, On the Adiabatic theorem of quantum mechanics, Journal of the Physical Society of Japan, 5, 435, 10.1143/JPSJ.5.435
Khaneja, 2017, Chirp excitation, Journal of Magnetic Resonance, 282, 32, 10.1016/j.jmr.2017.07.003
Khaneja, 2001, Time optimal control in spin systems, Physical Review A, 63, 1, 10.1103/PhysRevA.63.032308
Khaneja, 2002, Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer, Physical Review A, 65, 1, 10.1103/PhysRevA.65.032301
Khaneja, 2002, Subriemannian geodesics and optimal control of spin systems, Proceedings of the American Control Conference, 4, 2806
Khaneja, 2005, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance, 172, 296, 10.1016/j.jmr.2004.11.004
Khaneja, 2003, Optimal control of spin dynamics in the presence of relaxation, Journal of Magnetic Resonance, 162, 311, 10.1016/S1090-7807(03)00003-X
Kobzar, 2012, Exploring the limits of broadband 90 degrees and 180 degrees universal rotation pulses, Journal of Magnetic Resonance, 225, 142, 10.1016/j.jmr.2012.09.013
Kobzar, 2005, Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset, Journal of Magnetic Resonance, 173, 229, 10.1016/j.jmr.2004.12.005
Kosmann-Schwarzbach, 2010
Kunz, 1986, Use of frequency-modulated radiofrequency pulses in MR imaging experiments, Magnetic Resonance in Medicine, 3, 377, 10.1002/mrm.1910030303
Kuprov, 2013, Spin system trajectory analysis under optimal control pulses, Journal of Magnetic Resonance, 233, 107, 10.1016/j.jmr.2013.02.012
Kupče, 1995, Adiabatic pulses for wideband inversion and broadband decoupling, Journal of Magnetic Resonance, Series A, 115, 273, 10.1006/jmra.1995.1179
Levitt, 1986, Composite pulses, Progress in Nuclear Magnetic Resonance Spectroscopy, 18, 61, 10.1016/0079-6565(86)80005-X
Levitt, 1983, Composite pulses constructed by a recursive expansion procedure, Journal of Magnetic Resonance, 55, 247
Levitt, 1984, Composite pulse excitation in three-level systems, Journal of Chemical Physics, 80, 3064, 10.1063/1.447142
Lu, 2017, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, Npj Quantum Information, 3, 45, 10.1038/s41534-017-0045-z
Meister, 2014, Optimal control theory with arbitrary superpositions of waveforms, Journal of Physics A, 47, 10.1088/1751-8113/47/49/495002
Nishimori, Y. (1999). Learning algorithm for independent component analysis by geodesic flows on orthogonal group. In Proc. Int. Jt. Conf. neural Netw., Vol. 2 (pp. 933–938).
Nocedal, 2006
Plumbley, 2004, Lie group Methods for optimization with orthogonality constraints, 1245
Power, 2016, Increasing the quantitative bandwidth of NMR measurements, Chemical Communications, 52, 2916, 10.1039/C5CC10206E
Rasanen, 2007, Optimal control of quantum rings by terahertz laser pulses, Physical Review Letters, 98, 10.1103/PhysRevLett.98.157404
Rodrigues, 1840, Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire, Journal de Matheématiques Pures et Appliquées, 380
Rossmann, 2006
Saywell, 2018, Optimal control of mirror pulses for cold-atom interferometry, Physical Review A, 98, 10.1103/PhysRevA.98.023625
Schirmer, 2011, Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered, New Journal of Physics, 13, 10.1088/1367-2630/13/7/073029
Schur, 1891, Zur Theorie der endlichen Transformationsgruppen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 4, 15
Shaka, 1983, Composite pulses with dual compensation, Journal of Magnetic Resonance, 55, 487
Shaka, 1987, Symmetric phase-alternating composite pulses, Journal of Magnetic Resonance, 71, 495
Spindler, 2013, Optimal control on lie groups: Theory and applications, WSEAS Transactions on Mathematics, 12, 531
Taylor, 1994
Terzakis, 2018, Modified rodrigues parameters: An efficient representation of orientation in 3D vision and graphics, Journal of Mathematical Imaging and Vision, 60, 422, 10.1007/s10851-017-0765-x
Tian, 2019, Optimal quantum optical control of spin in diamond, Physical Review A, 100, 10.1103/PhysRevA.100.012110
Tosner, 2009, Optimal control in NMR spectroscopy: numerical implementation in SIMPSON, Journal of Magnetic Resonance, 197, 120, 10.1016/j.jmr.2008.11.020
Tuzel, 2005, Simultaneous multiple 3D motion estimation via mode finding on Lie groups, 18
Tycko, 1985, Composite pulses without phase distortion, Journal of Magnetic Resonance, 61, 90
Van Reeth, E., Rafiney, H., Tesch, M., Glaser, S. J., & Sugny, D. (2016). Optimizing MRI contrast with B1 pulses using optimal control theory. In Proc. IEEE Int. Symp. Biomed. imaging (pp. 310–313).
Walsh, G. C., Montgomery, R., & Sastry, S. S. (1994). Optimal path planning on matrix lie groups. In Proc. IEEE Conf. Decis. control, Vol. 2 (pp. 1258–1263).
Woit, 2017
Zhao, 2008, Coherent and optimal control of adiabatic motion of ions in a trap, Physical Review A, 77, 10.1103/PhysRevA.77.012338