Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhu, 2014, Nanomedicine in the management of microbial infection – overview and perspectives, Nano Today, 9, 478, 10.1016/j.nantod.2014.06.003
Tommasi, 2015, ESKAPEing the labyrinth of antibacterial discovery, Nat. Rev. Drug Discov., 14, 529, 10.1038/nrd4572
Huwaitat, 2016, Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections, Future Microbiol, 11, 955, 10.2217/fmb-2016-0035
Frieden, 2013
Masi, 2017, Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria, 2, 17001
Pelgrift, 2013, Nanotechnology as a therapeutic tool to combat microbial resistance, Adv. Drug Deliv. Rev., 65, 1803, 10.1016/j.addr.2013.07.011
Laxminarayan, 2013, Antibiotic resistance—the need for global solutions, Lancet Infect. Dis., 13, 1057, 10.1016/S1473-3099(13)70318-9
Wilson, 2014, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol., 12, 35, 10.1038/nrmicro3155
Bai, 2010, Antisense antibiotics: a brief review of novel target discovery and delivery, Curr. Drug Discov. Technol., 7, 76, 10.2174/157016310793180594
Woodford, 2009, Tackling antibiotic resistance: a dose of common antisense?, J. Antimicrob. Chemother., 63, 225, 10.1093/jac/dkn467
Zhang, 2010, Development of nanoparticles for antimicrobial drug delivery, Curr. Med. Chem., 17, 585, 10.2174/092986710790416290
Huh, 2011, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 156, 128, 10.1016/j.jconrel.2011.07.002
Piddock, 2006, Multidrug-resistance efflux pumps - not just for resistance, Nat. Rev. Microbiol., 4, 629, 10.1038/nrmicro1464
Poole, 2005, Efflux-mediated antimicrobial resistance, J. Antimicrob. Chemother., 56, 20, 10.1093/jac/dki171
Li, 2004, Efflux-mediated drug resistance in bacteria, Drugs, 64, 159, 10.2165/00003495-200464020-00004
Zgurskaya, 2015, Permeability barrier of gram-negative cell envelopes and approaches to bypass it, ACS Infect. Dis., 1, 512, 10.1021/acsinfecdis.5b00097
Sahay, 2010, Endocytosis of nanomedicines, J. Control. Release, 145, 182, 10.1016/j.jconrel.2010.01.036
Lonhienne, 2010, Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus, Proc. Natl. Acad. Sci. U. S. A., 107, 12883, 10.1073/pnas.1001085107
Gao, 2014, Nanoparticle approaches against bacterial infections, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6, 532, 10.1002/wnan.1282
Zazo, 2016, Current applications of nanoparticles in infectious diseases, J. Control. Release, 224, 86, 10.1016/j.jconrel.2016.01.008
Forier, 2014, Lipid and polymer nanoparticles for drug delivery to bacterial biofilms, J. Control. Release, 190, 607, 10.1016/j.jconrel.2014.03.055
Nikaido, 1994, Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science, 264, 382, 10.1126/science.8153625
Silhavy, 2010, The bacterial cell envelope, Cold Spring Harb. Perspect. Biol., 2, a000414, 10.1101/cshperspect.a000414
Holst, 2010, Chapter 1 - overview of the glycosylated components of the bacterial cell envelope, 1
Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004
Lohner, 2009, New strategies for novel antibiotics: peptides targeting bacterial cell membranes, Gen. Physiol. Biophys., 28, 105, 10.4149/gpb_2009_02_105
Denyer, 2002, Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria, J. Appl. Microbiol., 35s, 10.1046/j.1365-2672.92.5s1.19.x
Nikaido, 2003, Molecular basis of bacterial outer membrane permeability revisited, Microbiol. Mol. Biol. Rev., 67, 593, 10.1128/MMBR.67.4.593-656.2003
Raetz, 1978, Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev., 42, 614, 10.1128/MMBR.42.3.614-659.1978
Seltmann, 2002
Nikaido, 1993, Transport across the bacterial outer membrane, J. Bioenerg. Biomembr., 25, 581, 10.1007/BF00770245
Plesiat, 1992, Outer membranes of Gram-negative bacteria are permeable to steroid probes, Mol. Microbiol., 6, 1323, 10.1111/j.1365-2958.1992.tb00853.x
Konovalova, 2015, Outer membrane lipoprotein biogenesis: lol is not the end, Philos. Trans. R. Soc. B, 370, 20150030, 10.1098/rstb.2015.0030
Wiener, 2011, How hydrophobic molecules traverse the outer membranes of Gram-negative bacteria, Proc. Natl. Acad. Sci., 108, 10929, 10.1073/pnas.1106927108
Delcour, 2009, Outer membrane permeability and antibiotic resistance, Biochim. Biophys. Acta, 1794, 808, 10.1016/j.bbapap.2008.11.005
Braun, 2001, Outer membrane channels and active transporters for the uptake of antibiotics, J. Infect. Dis., 183, S12, 10.1086/318840
van den Berg, 2010, Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls, Chembiochem, 11, 1339, 10.1002/cbic.201000105
Nestorovich, 2002, Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores, Proc. Natl. Acad. Sci. U. S. A., 99, 9789, 10.1073/pnas.152206799
Pongprayoon, 2009, Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate, Proc. Natl. Acad. Sci. U. S. A., 106, 21614, 10.1073/pnas.0907315106
Bajaj, 2017, Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules, ACS Nano, 11, 5465, 10.1021/acsnano.6b08613
Ghai, 2017, General method to determine the flux of charged molecules through nanopores applied to β-lactamase inhibitors and OmpF, J. Phys. Chem. Lett., 8, 1295, 10.1021/acs.jpclett.7b00062
Yildiz, 2006, Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation, EMBO J., 25, 3702, 10.1038/sj.emboj.7601237
Yoshimura, 1982, Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes, J. Bacteriol., 152, 636, 10.1128/jb.152.2.636-642.1982
Lepore, 2011, Ligand-gated diffusion across the bacterial outer membrane, Proc. Natl. Acad. Sci. U. S. A., 108, 10121, 10.1073/pnas.1018532108
van den Berg, 2015, Outer-membrane translocation of bulky small molecules by passive diffusion, Proc. Natl. Acad. Sci. U. S. A., 112, E2991, 10.1073/pnas.1424835112
Ye, 2004, Crystal structure of the bacterial nucleoside transporter Tsx, EMBO J., 23, 3187, 10.1038/sj.emboj.7600330
Bhamidimarri, 2016, Role of electroosmosis in the permeation of neutral molecules: CymA and cyclodextrin as an example, Biophys. J., 110, 600, 10.1016/j.bpj.2015.12.027
Hearn, 2009, Transmembrane passage of hydrophobic compounds through a protein channel wall, Nature, 458, 367, 10.1038/nature07678
Schauer, 2008, New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’?, Trends Biochem. Sci., 33, 330, 10.1016/j.tibs.2008.04.012
Krewulak, 2008, Structural biology of bacterial iron uptake, Biochim. Biophys. Acta, 1778, 1781, 10.1016/j.bbamem.2007.07.026
Ferguson, 1998, Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide, Science, 282, 2215, 10.1126/science.282.5397.2215
Sochacki, 2011, Protein diffusion in the periplasm of E. coli under osmotic stress, Biophys. J., 100, 22, 10.1016/j.bpj.2010.11.044
Malanovic, 2016, Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides, Biochim. Biophys. Acta Biomembr., 1858, 936, 10.1016/j.bbamem.2015.11.004
Demchick, 1996, The permeability of the wall fabric of Escherichia coli and Bacillus subtilis, J. Bacteriol., 178, 768, 10.1128/jb.178.3.768-773.1996
Hughes, 1975, Estimates of the porosity of Bacillus licheniformis and Bacillus subtilis cell walls, Z. Immunitatsforsch. Exp. Klin. Immunol., 149, 126
Typas, 2012, From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nat. Rev. Microbiol., 10, 123, 10.1038/nrmicro2677
Lambert, 2002, Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria, J. Appl. Microbiol., 46s, 10.1046/j.1365-2672.92.5s1.7.x
Sycuro, 2010, Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization, Cell, 141, 822, 10.1016/j.cell.2010.03.046
Xie, 2004, Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family, Mol. Membr. Biol., 21, 323, 10.1080/09687860400003941
Brown, 2013, Wall teichoic acids of gram-positive bacteria, Annu. Rev. Microbiol., 67, 313, 10.1146/annurev-micro-092412-155620
Weidenmaier, 2008, Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions, Nat. Rev. Microbiol., 6, 276, 10.1038/nrmicro1861
Navarre, 1999, Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev., 63, 174, 10.1128/MMBR.63.1.174-229.1999
Epand, 2007, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins), Biochim. Biophys. Acta, 1768, 2500, 10.1016/j.bbamem.2007.05.023
Matias, 2003, Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa, J. Bacteriol., 185, 6112, 10.1128/JB.185.20.6112-6118.2003
Vollmer, 2010, Architecture of peptidoglycan: more data and more models, Trends Microbiol., 18, 59, 10.1016/j.tim.2009.12.004
Strauss, 2009, Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli, J. Mol. Recognit., 22, 347, 10.1002/jmr.955
Lam, 1992, Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution, J. Bacteriol., 174, 7159, 10.1128/jb.174.22.7159-7167.1992
Yao, 1999, Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy, J. Bacteriol., 181, 6865, 10.1128/JB.181.22.6865-6875.1999
Brooks, 2014, Therapeutic strategies to combat antibiotic resistance, Adv. Drug Deliv. Rev., 78, 14, 10.1016/j.addr.2014.10.027
Silver, 2011, Challenges of antibacterial discovery, Clin. Microbiol. Rev., 24, 71, 10.1128/CMR.00030-10
Coates, 2011, Novel classes of antibiotics or more of the same?, Br. J. Pharmacol., 163, 184, 10.1111/j.1476-5381.2011.01250.x
Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333
Wright, 2010, Q&A: antibiotic resistance: where does it come from and what can we do about it?, BMC Biol., 8, 123, 10.1186/1741-7007-8-123
Nikaido, 1996, Multidrug efflux pumps of gram-negative bacteria, J. Bacteriol., 178, 5853, 10.1128/jb.178.20.5853-5859.1996
Ofek, 1994, Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice, Antimicrob. Agents Chemother., 38, 374, 10.1128/AAC.38.2.374
Schmidt, 2014, Engineering persister-specific antibiotics with synergistic antimicrobial functions, ACS Nano, 8, 8786, 10.1021/nn502201a
Chopra, 2001, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65, 232, 10.1128/MMBR.65.2.232-260.2001
Danelon, 2006, Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation, Biophys. J., 90, 1617, 10.1529/biophysj.105.075192
Pages, 2008, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria, Nat. Rev. Microbiol., 6, 893, 10.1038/nrmicro1994
Good, 2000, Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer, Microbiology, 146, 2665, 10.1099/00221287-146-10-2665
Mellbye, 2010, Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of Escherichia coli in vitro and in vivo, J. Antimicrob. Chemother., 65, 98, 10.1093/jac/dkp392
Cerqueira, 2008, DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH), Int. J. Mol. Sci., 9, 1944, 10.3390/ijms9101944
Campbell, 2011, Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals, Chem. Soc. Rev., 40, 5680, 10.1039/c1cs15048k
Järver, 2012, Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA, Mol. Ther.–Nucleic Acids, 1, 1
Ashizawa, 2015, Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01, Expert Opin. Drug Deliv., 12, 1107, 10.1517/17425247.2015.996545
Eriksson, 2002, Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli, J. Biol. Chem., 277, 7144, 10.1074/jbc.M106624200
Readman, 2016, Translational inhibition of CTX-M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime, Front. Microbiol., 7, 373, 10.3389/fmicb.2016.00373
Traglia, 2012, Internalization of locked nucleic acids/DNA hybrid oligomers into Escherichia coli, BioRes. Open Access, 1, 260, 10.1089/biores.2012.0257
Good, 2001, Bactericidal antisense effects of peptide-PNA conjugates, Nat. Biotechnol., 19, 360, 10.1038/86753
Guo, 2006, Treatment of Streptococcus mutans with antisense oligodeoxyribonucleotides to gtfB mRNA inhibits GtfB expression and function, FEMS Microbiol. Lett., 264, 8, 10.1111/j.1574-6968.2006.00378.x
Mellbye, 2009, Variations in amino acid composition of antisense peptide-phosphorodiamidate morpholino oligomer affect potency against Escherichia coli in vitro and in vivo, Antimicrob. Agents Chemother., 53, 525, 10.1128/AAC.00917-08
Geller, 2005, Antisense phosphorodiamidate morpholino oligomer inhibits viability of Escherichia coli in pure culture and in mouse peritonitis, J. Antimicrob. Chemother., 55, 983, 10.1093/jac/dki129
Santos, 2015, Effect of native gastric mucus on in vivo hybridization therapies directed at Helicobacter pylori, Mol. Ther.–Nucleic Acids, 4, 10.1038/mtna.2015.46
Fontenete, 2015, Towards fluorescence in vivo hybridization (FIVH) detection of H. pylori in gastric mucosa using advanced LNA probes, PLoS One, 10, 10.1371/journal.pone.0125494
Lundin, 2013, Biological activity and biotechnological aspects of locked nucleic acids, Adv. Genet., 82, 47, 10.1016/B978-0-12-407676-1.00002-0
Wojtkowiak-Szlachcic, 2015, Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy, Nucleic Acids Res., 43, 3318, 10.1093/nar/gkv163
Järver, 2012, Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA, Mol. Ther.–Nucleic Acids, 1
Bistue, 2009, Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria, Proc. Natl. Acad. Sci. U. S. A., 106, 13230, 10.1073/pnas.0906529106
Abushahba, 2016, Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens, Sci. Rep., 6, 20832, 10.1038/srep20832
Santos, 2014, Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect, J. Biotechnol., 187, 16, 10.1016/j.jbiotec.2014.06.023
Rocha, 2016, Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: the effect of pH, dextran sulfate and probe concentration, J. Biotechnol., 226, 1, 10.1016/j.jbiotec.2016.03.047
Cowan, 1992, Crystal structures explain functional properties of two E. coli porins, Nature, 358, 727, 10.1038/358727a0
Skwarecki, 2016, Antimicrobial molecular nanocarrier-drug conjugates, Nanomedicine, 12, 2215, 10.1016/j.nano.2016.06.002
de Carvalho, 2014, Siderophores as “trojan horses”: tackling multidrug resistance?, Front. Microbiol., 5, 290, 10.3389/fmicb.2014.00290
Heinisch, 2002, Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds, J. Med. Chem., 45, 3032, 10.1021/jm010546b
Wittmann, 2002, New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides, Bioorg. Med. Chem., 10, 1659, 10.1016/S0968-0896(02)00044-5
Page, 2010, In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative bacilli, Antimicrob. Agents Chemother., 54, 2291, 10.1128/AAC.01525-09
Mushtaq, 2010, Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters, J. Antimicrob. Chemother., 65, 266, 10.1093/jac/dkp425
Mima, 2011, In vitro activity of BAL30072 against Burkholderia pseudomallei, Int. J. Antimicrob. Agents, 38, 157, 10.1016/j.ijantimicag.2011.03.019
Higgins, 2012, In vitro activity of the siderophore monosulfactam BAL30072 against meropenem-non-susceptible Acinetobacter baumannii, J. Antimicrob. Chemother., 67, 1167, 10.1093/jac/dks009
Fernandes, 2017, Antibiotics in late clinical development, Biochem. Pharmacol., 133, 152, 10.1016/j.bcp.2016.09.025
Butler, 2013, Antibiotics in the clinical pipeline in 2013, J. Antibiot., 66, 571, 10.1038/ja.2013.86
Davis, 2004, Cyclodextrin-based pharmaceutics: past, present and future, Nat. Rev. Drug Discov., 3, 1023, 10.1038/nrd1576
Karginov, 2013, Cyclodextrin derivatives as anti-infectives, Curr. Opin. Pharmacol., 13, 1, 10.1016/j.coph.2013.08.007
Imperiale, 2015, Cyclodextrin complexes for treatment improvement in infectious diseases, Nanomedicine (London), 10, 1621, 10.2217/nnm.15.16
Li, 2016, Sugar-grafted cyclodextrin nanocarrier as a “trojan horse” for potentiating antibiotic activity, Pharm. Res., 33, 1161, 10.1007/s11095-016-1861-0
Athanassiou, 2003, Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance, J. Pharm. Pharmacol., 55, 291, 10.1211/002235702649
Teixeira, 2013, Ultrastructural changes in bacterial membranes induced by nano-assemblies β-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation, Pharm. Dev. Technol., 18, 600, 10.3109/10837450.2011.649853
Suárez, 2014, Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions, Colloids Surf. B: Biointerfaces, 118, 194, 10.1016/j.colsurfb.2014.01.028
Aleem, 2008, Effect of beta-cyclodextrin and hydroxypropyl beta-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir, J. Pharm. Biomed. Anal., 47, 535, 10.1016/j.jpba.2008.02.006
Jaiswal, 2010, Enhancement of the antibacterial properties of silver nanoparticles using beta-cyclodextrin as a capping agent, Int. J. Antimicrob. Agents, 36, 280, 10.1016/j.ijantimicag.2010.05.006
He, 2008, Cyclodextrin-based aggregates and characterization by microscopy, Micron, 39, 495, 10.1016/j.micron.2007.06.017
González-Gaitano, 2002, The aggregation of cyclodextrins as studied by photon correlation spectroscopy, J. Incl. Phenom. Macrocycl. Chem., 44, 101, 10.1023/A:1023065823358
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Lemire, 2013, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028
Vardanyan, 2015, Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport, J. Nanobiotechnol., 13, 69, 10.1186/s12951-015-0131-3
Paredes, 2014, Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA), Int. J. Nanomedicine, 9, 1717
Eckhardt, 2013, Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev., 113, 4708, 10.1021/cr300288v
Li, 2015, Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles, Sci. Rep., 5, 11033, 10.1038/srep11033
Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012
Fayaz, 2010, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria, Nanomedicine, 6, 103, 10.1016/j.nano.2009.04.006
El Badawy, 2011, Surface charge-dependent toxicity of silver nanoparticles, Environ. Sci. Technol., 45, 283, 10.1021/es1034188
Amro, 2000, High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability, Langmuir, 16, 2789, 10.1021/la991013x
Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 916, 10.1021/pr0504079
Li, 2010, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol., 85, 1115, 10.1007/s00253-009-2159-5
Mirzajani, 2011, Antibacterial effect of silver nanoparticles on Staphylococcus aureus, Res. Microbiol., 162, 542, 10.1016/j.resmic.2011.04.009
Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine, 3, 95, 10.1016/j.nano.2006.12.001
Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4, 707, 10.1016/j.actbio.2007.11.006
Sawosz, 2010, Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes, Int. J. Nanomedicine, 5, 631
Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 10.1021/pr0504079
Xu, 2004, Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging, Biochemistry, 43, 10400, 10.1021/bi036231a
Lee, 2010, Probing of multidrug ABC membrane transporters of single living cells using single plasmonic nanoparticle optical probes, Anal. Bioanal. Chem., 397, 3317, 10.1007/s00216-010-3864-8
Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h
Kumar, 2011, Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells, Chemosphere, 83, 1124, 10.1016/j.chemosphere.2011.01.025
Stoimenov, 2002, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18, 6679, 10.1021/la0202374
Lee, 2007, In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos, ACS Nano, 1, 133, 10.1021/nn700048y
Xu, 2002, Direct measurement of sizes and dynamics of single living membrane transporters using nanooptics, Nano Lett., 2, 175, 10.1021/nl015682i
Browning, 2016, Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells, RSC Adv., 6, 36794, 10.1039/C6RA05895G
Chen, 2000, Recent advances in antimicrobial dendrimers, Adv. Mater., 12, 843, 10.1002/(SICI)1521-4095(200006)12:11<843::AID-ADMA843>3.0.CO;2-T
Perreault, 2015, Antimicrobial properties of graphene oxide nanosheets: why size matters, ACS Nano, 9, 7226, 10.1021/acsnano.5b02067
Tu, 2013, Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat. Nanotechnol., 8, 594, 10.1038/nnano.2013.125
Nanda, 2016, Study of antibacterial mechanism of graphene oxide using Raman spectroscopy, Sci. Rep., 6, 28443, 10.1038/srep28443
Kang, 2008, Antibacterial effects of carbon nanotubes: size does matter!, Langmuir, 24, 6409, 10.1021/la800951v
Cheng, 2007, Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study, Eur. J. Med. Chem., 42, 1032, 10.1016/j.ejmech.2006.12.035
Ma, 2007, Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug, Eur. J. Med. Chem., 42, 93, 10.1016/j.ejmech.2006.07.015
Mishra, 2011, PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections, Nanomedicine, 7, 935, 10.1016/j.nano.2011.04.008
Chakraborty, 2012, Biocompatibility of folate-modified chitosan nanoparticles, Asian Pac. J. Trop. Biomed., 2, 215, 10.1016/S2221-1691(12)60044-6
Lin, 2013, Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori, Biomaterials, 34, 4466, 10.1016/j.biomaterials.2013.02.028
Qi, 2004, Preparation and antibacterial activity of chitosan nanoparticles, Carbohydr. Res., 339, 2693, 10.1016/j.carres.2004.09.007
Friedman, 2013, Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens, J. Investig. Dermatol., 133, 1231, 10.1038/jid.2012.399
Chen, 2002, Interactions between dendrimer biocides and bacterial membranes, Biomaterials, 23, 3359, 10.1016/S0142-9612(02)00036-4
Arias, 2009, Inactivation of bacterial pathogens by carbon nanotubes in suspensions, Langmuir, 25, 3003, 10.1021/la802769m
Carpio, 2012, Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells, Nano, 4, 4746
Chen, 2014, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nano, 6, 1879
Koren, 2012, Cell-penetrating peptides: breaking through to the other side, Trends Mol. Med., 18, 385, 10.1016/j.molmed.2012.04.012
Wang, 2014, Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery, J. Control. Release, 174, 126, 10.1016/j.jconrel.2013.11.020
Andersson, 2016, Mechanisms and consequences of bacterial resistance to antimicrobial peptides, Drug Resist. Updat., 26, 43, 10.1016/j.drup.2016.04.002
Zetterberg, 2011, PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides, J. Control. Release, 156, 323, 10.1016/j.jconrel.2011.08.029
Melo, 2009, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations, Nat. Rev. Microbiol., 7, 245, 10.1038/nrmicro2095
Wimley, 2010, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 5, 905, 10.1021/cb1001558
Brogden, 2005, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 3, 238, 10.1038/nrmicro1098
Milletti, 2012, Cell-penetrating peptides: classes, origin, and current landscape, Drug Discov. Today, 17, 850, 10.1016/j.drudis.2012.03.002
Schmidt, 2013, Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering, Curr. Opinion Solid State Mater. Sci., 17, 151, 10.1016/j.cossms.2013.09.004
Bahnsen, 2013, Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure, Biochim. Biophys. Acta Biomembr., 1828, 223, 10.1016/j.bbamem.2012.10.010
Kristensen, 2016, Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos, Int. J. Mol. Sci., 17, 185, 10.3390/ijms17020185
Hancock, 1998, Cationic peptides: a new source of antibiotics, Trends Biotechnol., 16, 82, 10.1016/S0167-7799(97)01156-6
Dathe, 1999, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells, Biochim. Biophys. Acta Biomembr., 1462, 71, 10.1016/S0005-2736(99)00201-1
Lam, 2016, Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers, Nat. Microbiol., 1, 16162, 10.1038/nmicrobiol.2016.162
Friedrich, 2000, Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria, Antimicrob. Agents Chemother., 44, 2086, 10.1128/AAC.44.8.2086-2092.2000
Patenge, 2013, Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes, Mol. Ther.–Nucleic Acids, 2, 10.1038/mtna.2013.62
Henriques, 2006, Cell-penetrating peptides and antimicrobial peptides: how different are they?, Biochem. J., 399, 1, 10.1042/BJ20061100
He, 1995, Antimicrobial peptide pores in membranes detected by neutron in-plane scattering, Biochemistry, 34, 15614, 10.1021/bi00048a002
Ladokhin, 1997, Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin, Biophys. J., 72, 1762, 10.1016/S0006-3495(97)78822-2
Matsuzaki, 1998, Relationship of membrane curvature to the formation of pores by magainin 2, Biochemistry, 37, 11856, 10.1021/bi980539y
Sani, 2013, Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via a pore mechanism, Antimicrob. Agents Chemother., 57, 3593, 10.1128/AAC.00195-13
Fernandez, 2012, The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism, Phys. Chem. Chem. Phys., 14, 15739, 10.1039/c2cp43099a
Lockey, 1996, Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae, Eur. J. Biochem., 236, 263, 10.1111/j.1432-1033.1996.00263.x
Silvestro, 1997, The concentration-dependent membrane activity of cecropin A, Biochemistry, 36, 11452, 10.1021/bi9630826
Patrzykat, 2002, Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli, Antimicrob. Agents Chemother., 46, 605, 10.1128/AAC.46.3.605-614.2002
Matsuzaki, 1995, Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore, Biochemistry, 34, 6521, 10.1021/bi00019a033
Sani, 2016, How membrane-active peptides get into lipid membranes, Acc. Chem. Res., 49, 1130, 10.1021/acs.accounts.6b00074
Vaara, 1996, Group of peptides that act synergistically with hydrophobic antibiotics against Gram-negative enteric bacteria, Antimicrob. Agents Chemother., 40, 1801, 10.1128/AAC.40.8.1801
Soofi, 2012, Targeting essential genes in Salmonella enterica serovar typhimurium with antisense peptide nucleic acid, Antimicrob. Agents Chemother., 56, 6407, 10.1128/AAC.01437-12
Bai, 2012, Targeting RNA polymerase primary σ(70) as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid, PLoS One, 7, 10.1371/journal.pone.0029886
Nekhotiaeva, 2004, Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides, FASEB J., 18, 394, 10.1096/fj.03-0449fje
Hatamoto, 2009, Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA, Appl. Microbiol. Biotechnol., 84, 1161, 10.1007/s00253-009-2099-0
Green, 1988, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, 55, 1179, 10.1016/0092-8674(88)90262-0
Frankel, 1988, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, 55, 1189, 10.1016/0092-8674(88)90263-2
Gregoriadis, 1976, The carrier potential of liposomes in biology and medicine (second of two parts), N. Engl. J. Med., 295, 765, 10.1056/NEJM197609302951406
Gregoriadis, 1976, The carrier potential of liposomes in biology and medicine (first of two parts), N. Engl. J. Med., 295, 704, 10.1056/NEJM197609232951305
Omri, 1996, Preparation, properties and the effects of amikacin, netilmicin and tobramycin in free and liposomal formulations on Gram-negative and Gram-positive bacteria, Int. J. Antimicrob. Agents, 7, 9, 10.1016/0924-8579(96)00003-9
Schiffelers, 2001, Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies, J. Antimicrob. Chemother., 48, 333, 10.1093/jac/48.3.333
Salem, 2003, Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages, Int. J. Pharm., 250, 403, 10.1016/S0378-5173(02)00552-5
Drulis-Kawa, 2006, In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains, Int. J. Pharm., 315, 59, 10.1016/j.ijpharm.2006.02.017
Mohammadi, 2011, Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system, Colloids Surf. B: Biointerfaces, 88, 39, 10.1016/j.colsurfb.2011.05.050
Kashi, 2012, Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method, Int. J. Nanomedicine, 7, 221
Drulis-Kawa, 2009, The interaction between Pseudomonas aeruginosa cells and cationic PC:Chol:DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell, Int. J. Pharm., 367, 211, 10.1016/j.ijpharm.2008.09.043
Wang, 2016, Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy, Int. J. Nanomedicine, 11, 4025, 10.2147/IJN.S55807
Haque, 2001, Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “nature's own” fusogenic lipid bilayer, Biochemistry, 40, 4340, 10.1021/bi002030k
Simões, 2001, On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes, Biochim. Biophys. Acta Biomembr., 1515, 23, 10.1016/S0005-2736(01)00389-3
Nicolosi, 2010, Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria, Int. J. Antimicrob. Agents, 35, 553, 10.1016/j.ijantimicag.2010.01.015
Ma, 2013, Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium, Int. J. Nanomedicine, 8, 2351, 10.2147/IJN.S42617
Santos, 2017, Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus, Biomaterials, 138, 1, 10.1016/j.biomaterials.2017.05.029
Beaulac, 1998, In vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against Gram-negative and Gram-positive bacteria, J. Antimicrob. Chemother., 41, 35, 10.1093/jac/41.1.35
Beaulac, 1999, In vitro bactericidal evaluation of a low phase transition temperature liposomal tobramycin formulation as a dry powder preparation against Gram negative and Gram positive bacteria, J. Liposome Res., 9, 301, 10.3109/08982109909018652
Sachetelli, 2000, Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells, Biochim. Biophys. Acta Biomembr., 1463, 254, 10.1016/S0005-2736(99)00217-5
Rukavina, 2016, Current trends in development of liposomes for targeting bacterial biofilms, Pharmaceutics, 8, 18, 10.3390/pharmaceutics8020018
Anderson, 2004, The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations, Drug Deliv., 11, 33, 10.1080/10717540490265243
Fillion, 2001, Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides, Biochim. Biophys. Acta, 1515, 44, 10.1016/S0005-2736(01)00392-3
Halwani, 2007, Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia, J. Antimicrob. Chemother., 60, 760, 10.1093/jac/dkm289
Mugabe, 2006, Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 50, 2016, 10.1128/AAC.01547-05
Desjardins, 2002, Differential behaviour of fluid liposomes toward mammalian epithelial cells and bacteria: restriction of fusion to bacteria, J. Drug Target., 10, 47, 10.1080/10611860290007522
Meng, 2009, Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA, Antimicrob. Agents Chemother., 53, 2871, 10.1128/AAC.01542-08
Furneri, 2000, Ofloxacin-loaded liposomes: in vitro activity and drug accumulation in bacteria, Antimicrob. Agents Chemother., 44, 2458, 10.1128/AAC.44.9.2458-2464.2000
Yang, 2012, Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria, Photochem. Photobiol., 88, 548, 10.1111/j.1751-1097.2011.00983.x
Yang, 2001, Barrel-stave model or toroidal model? A case study on melittin pores, Biophys. J., 81, 1475, 10.1016/S0006-3495(01)75802-X
Biteen, 2010, Single-molecule and superresolution imaging in live bacteria cells, Cold Spring Harb. Perspect. Biol., 2, 10.1101/cshperspect.a000448
Karunatilaka, 2014, Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts, MBio, 5, 10.1128/mBio.02172-14