Networking for Big Data: A Survey

IEEE Communications Surveys and Tutorials - Tập 19 Số 1 - Trang 531-549 - 2017
Shui Yu1, Meng Liu2, Wanchun Dou2, Xiting Liu3, Sanming Zhou4
1School of IT, Deakin University, Melbourne, VIC, Australia
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
3State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
4School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/INFCOM.2013.6567111

10.1109/TNET.2011.2178036

10.1109/INFCOM.2013.6567110

10.1109/ACCESS.2016.2577036

10.1145/1749603.1749605

10.1145/2666468

ward, 2013, Undefined by data: A survey of big data definitions

hilbert, 2011, The world’s technological capacity to store, communicate, and compute information, Science, 332, 60, 10.1126/science.1200970

laney, 2001, 3d Data Management Controlling Data Volume Velocity and Variety, 6, 70

10.1017/CBO9780511610264.005

stamford, 2013, Gartner's 2013 Hype Cycle for Emerging Technologies Maps Out Evolving Relationship between Humans and Machines, 19

manyika, 2011, Big Data The Next Frontier for Innovation Competition and Productivity

10.1038/455028a

10.1038/455047a

2016, IBM Big Data and Information Management

barwick, 2008, The ‘four Vs’ of Big Data

10.1145/2619239.2626322

erdös, 1959, On random graphs I, Publ Math Debrecen, 6, 290, 10.5486/PMD.1959.6.3-4.12

10.1145/2619239.2626315

10.1016/j.bdr.2016.03.001

10.1145/1355734.1355746

10.1145/1327452.1327492

watts, 1998, Collective dynamics of ‘small-world’ networks, Nature, 393, 440, 10.1038/30918

10.1007/s13278-016-0394-1

yan, 2005, Discriminant analysis with tensor representation, Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR), 1, 526

10.1103/RevModPhys.74.47

li, 2008, Discriminant locally linear embedding with high-order tensor data, IEEE Trans Syst Man Cybern B Cybern, 38, 342, 10.1109/TSMCB.2007.911536

barabási, 1999, Emergence of scaling in random networks, Science, 286, 509, 10.1126/science.286.5439.509

10.1109/TDSC.2012.68

10.1109/INFOCOM.2014.6848053

low, 2014, Graphlab: A new framework for parallel machine learning

10.1145/1807167.1807184

zaharia, 2010, Spark: Cluster computing with working sets, Proc 2nd USENIX Conf Hot Topics Cloud Comput, 10, 10

10.1145/2463676.2467799

10.1145/1807167.1807297

10.1145/2481244.2481249

10.1145/2020408.2020580

10.1109/TWC.2014.040914.131422

10.1109/INFOCOM.2014.6848152

10.1109/TCOMM.2013.120713.130199

10.1109/BigDataService.2015.11

10.1080/00018730601170527

10.1017/CBO9780511921681

10.1109/TPAMI.2013.50

10.1145/2481244.2481248

10.1109/SURV.2014.012214.00180

10.1109/INFOCOM.2015.7218572

10.1109/TSC.2015.2491280

10.1145/1165389.945450

sharp, 2012, Dispatch From the Denver Debate

10.1109/TCC.2014.2325045

10.1109/TDSC.2013.8

10.1109/SURV.2012.060912.00182

10.1016/S1353-4858(12)70063-6

bai, 2015, Information-agnostic flow scheduling for commodity data centers, Proc USENIX Symp Netw Syst Design Implem (NSDI), 455

triandis, 1994, Culture and Social Behavior

10.1109/TKDE.2014.2334326

10.1080/10618600.2012.657144

abbass, 2014, Computational Red Teaming Risk Analytics of Big-Data-to-Decisions Intelligent Systems

10.1016/j.dss.2006.02.012

jordan, 2015, Machine learning: Trends, perspectives, and prospects, Science, 349, 255, 10.1126/science.aaa8415

10.1109/TETC.2014.2356499

10.1007/s10618-012-0302-x

10.1109/TKDE.2003.1185839

luo, 2006, Adaptive data fusion for energy efficient routing in wireless sensor networks, IEEE Trans Comput, 55, 1286, 10.1109/TC.2006.157

10.1109/TKDE.2013.109

10.1109/TKDE.2014.2373411

10.1111/j.1467-9868.2011.00771.x

10.1016/j.dss.2006.02.012

brockmann, 2013, The hidden geometry of complex, network-driven contagion phenomena, Science, 342, 1337, 10.1126/science.1245200

10.1098/rsif.2005.0051

10.1109/TKDE.2014.2320725

10.1145/948134.948136

10.1109/MNET.2015.7293306

michel, 2012, How many photos are uploaded to flickr every day and month?

10.1007/s11390-011-1189-5

10.1109/MCOM.2014.6871666

chang, 1999, Performance Guarantees in Communication Networks

10.1145/2628913

10.1109/INFOCOM.2014.6848034

10.1109/TMC.2013.62

10.1109/TKDE.2015.2453957

10.1109/TKDE.2011.199

10.1109/INFOCOM.2016.7524362

10.1137/S003614450342480

jiang, 2008, Stochastic Network Calculus

10.1016/j.ijhcs.2006.11.002

10.1145/1367497.1367591

10.1145/2534169.2486031

10.1145/988672.988752

10.1145/1557019.1557049

10.1109/TKDE.2014.2320716

10.1109/INFOCOM.2015.7218408

10.1145/2785956.2787480

10.1145/2043164.2018448

10.1145/316194.316229

10.1109/ICC.2015.7248339

10.1038/nature02555

10.1137/070710111

10.1145/2377677.2377710

10.1093/acprof:oso/9780199206650.001.0001

10.1126/science.1062081

10.1109/TKDE.2010.218

10.1109/TDSC.2013.21

10.1109/34.868688

10.1109/ICDM.2001.989507

10.1109/TNET.2008.925623

10.1109/TNET.2013.2239658

10.1109/TSE.2011.54

10.1109/INFCOM.2011.5934965

10.1109/WSC.2001.977327

wattenhofer, 2012, The Youtube social network, Proc ICWSM, 354

10.1109/WiCOM.2006.379

10.1109/TMM.2013.2265079

10.1109/LCOMM.2005.10018

10.1145/1376616.1376675

10.1080/00107510500052444

10.1109/TKDE.2003.1185839

10.1145/1132952.1132954

10.1109/TPDS.2013.182

2016, What Is Big Data Bring Big Data to the Enterprise

10.1109/TPAMI.2011.156

10.1145/860435.860485

10.1109/TIT.2006.871582

10.1109/CVPR.2001.990477

10.1109/TPAMI.2007.1096

10.1145/2623330.2623653

tao, 2005, Supervised tensor learning, Proc IEEE Int Conf Data Min, 8

10.1145/1889681.1889683

10.1109/CVPR.2005.240

lee, 1999, Learning the parts of objects by non-negative matrix factorization, Nature, 401, 788, 10.1038/44565

10.1109/CVPR.2003.1211457

10.1002/env.3170050203

10.1137/07070111X

10.1109/TKDE.2012.51

10.1109/MSP.2007.914732

10.1109/TII.2012.2189222

10.1109/TIP.2009.2022459

10.1109/TETC.2014.2330516

10.1016/j.patrec.2008.02.009

10.1109/TPAMI.2011.217

10.1109/TIP.2012.2190081

10.1109/TPDS.2015.2419671

10.1109/TC.2015.2417566

chen, 2014, Big Data—Related Technologies Challenges and Future Prospects (Springer Briefs in Computer Science), 10.1007/978-3-319-06245-7

yu, 2015, Networking of Big Data, 10.1201/b18772

10.1007/s11036-013-0489-0

10.1109/MNET.2016.1500104NM

10.1109/TNSM.2011.122011.110151

hu, 2014, Toward scalable systems for big data analytics: A technology tutorial, IEEE Access, 2, 652, 10.1109/ACCESS.2014.2332453

10.1109/TVCG.2011.288

10.1109/TPDS.2011.199

2016, IEEE Network

10.1109/TVCG.2011.226

2016, IEEE Network

cai, 2011, Graph regularized nonnegative matrix factorization for data representation, IEEE Trans Pattern Anal Mach Intell, 33, 1548, 10.1109/TPAMI.2010.231

10.1109/TPDS.2014.2314672

2016, IEEE Network

koller, 2009, Probabilistic Graphical Models Principles and Techniques

10.1109/TPDS.2013.269

10.1109/MPRV.2007.27

10.1109/TPDS.2013.181

10.1109/TVCG.2011.213

cooper, 1972, Introduction to Queueing Theory

10.1080/15427951.2004.10129088

10.1016/0010-0285(77)90016-0

10.1109/TNET.2014.2362745

10.1109/TC.2012.230

10.1109/INFCOM.2011.5935040

10.1109/TAC.1980.1102314

10.1162/jocn.1991.3.1.71

10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

10.1146/annurev.ne.19.030196.003045