Calculation of radiative opacity of plasma mixtures using a relativistic screened hydrogenic model
Tài liệu tham khảo
Nikiforov, 2005
Rubiano, 2002, Calculation of the ionization state for LTE plasmas using a new relativistic-screened hydrogenic model based on analytical potentials, Laser Part Beams, 20, 145, 10.1017/S0263034602201226
Salzmann, 1998
Florido, 2009, Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates, Phys Rev E, 80, 056402, 10.1103/PhysRevE.80.056402
Zeng, 2001, Detailed-term-accounting-approximation calculations of the radiative opacity of laser-produced Al plasmas, Phys Rev E, 64, 066412, 10.1103/PhysRevE.64.066412
Zeng, 2002, Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasmas, Phys Rev E, 66, 016401, 10.1103/PhysRevE.66.016401
Bar-Shalom, 1997, Non-LTE superconfiguration collisional radiative model, J Quant Spectrosc Radiat Transfer, 58, 427, 10.1016/S0022-4073(97)00050-2
Peyrusse, 2001, On the superconfiguration approach to model NLTE plasma emission, J Quant Spectrosc Radiat Transfer, 71, 571, 10.1016/S0022-4073(01)00099-1
Peyrusse, 2004, Complex atom physics and radiative properties of hot dense plasmas, Nucl Fusion, 44, S202, 10.1088/0029-5515/44/12/S10
Rodríguez, 2008, RAPCAL code, Laser Part Beams, 26, 433, 10.1017/S026303460800044X
Mínguez, 2010, Opacity calculation for target physics using the ABAKO/RAPCAL code, High Energy Density Phys, 6, 57, 10.1016/j.hedp.2009.05.016
Bauche J, Bauche-Arnoult C, Klapisch M.Transition arrays in the spectra ofionizedatoms. In: Bates D, Bederson B, editors. Advances in atomic and molecular physics, vol. 23.Academic Press;1988. p. 131–95.
Mínguez, 1998, Developments and comparison of two DENIM opacity models, Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip, 415, 539, 10.1016/S0168-9002(98)00365-9
Rubiano, 2004, Calculation of the radiative opacity of laser-produced plasmas using a relativistic-screened hydrogenic model, J Quant Spectrosc Radiat Transfer, 83, 159, 10.1016/S0022-4073(02)00298-4
Bar-Shalom, 1989, Super-transition-arrays, Phys Rev A, 40, 3183, 10.1103/PhysRevA.40.3183
Bar-Shalom, 2001, HULLAC, an integrated computer package for atomic processes in plasmas, J Quant Spectrosc Radiat Transfer, 71, 169, 10.1016/S0022-4073(01)00066-8
Mazevet, 2006, Mixed UTA and detailed line treatment for mid-Z opacity and spectral calculations, J Phys B: At Mol Opt Phys, 39, 3419, 10.1088/0953-4075/39/16/022
Hansen, 2007, Hybrid atomic models for spectroscopic plasma diagnostics, High Energy Density Phys, 3, 109, 10.1016/j.hedp.2007.02.032
Mayer H. Methods of opacity calculations. Technical Report LA-647. Los Alamos, NM: Los Alamos Scientific Laboratory; 1947.
Faussurier, 1999, Superconfiguration accounting approach versus average-atom model in local-thermodynamic-equilibrium highly ionized plasmas, Phys Rev E, 59, 7096, 10.1103/PhysRevE.59.7096
Tsakiris, 1987, An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas, J Quant Spectrosc Radiat Transfer, 38, 353, 10.1016/0022-4073(87)90030-6
Sakthivel, 2001, Opacity calculations for dense plasmas, Contrib Plasma Phys, 41, 335, 10.1002/1521-3986(200107)41:4<335::AID-CTPP335>3.0.CO;2-R
Das, 2012, Radiative opacity of low-Z plasma using screened hydrogenic model including l-splitting, J Quant Spectrosc Radiat Transfer, 113, 286, 10.1016/j.jqsrt.2011.11.011
Lokke WA, Grassberger WH. XNQ. A non-LTE emission and absorption coefficient subroutine. Technical Report UCRL-5227, LLNL unpublished; 1977.
Rozsnyai, 1997, Collisional-radiative average-atom model for hot plasmas, Phys Rev E, 55, 7507, 10.1103/PhysRevE.55.7507
Rose, 2004, Calculation of photoionized plasmas with an average-atom model, J Phys B: At Mol Opt Phys, 37, L337, 10.1088/0953-4075/37/17/L05
Di Rocco, 1992, The screened hydrogenic model, Braz J Phys, 22, 227
Nikiforov, 1996, Self-consistent hydrogen-like average atom model for the matter with given temperature and density, High Temp, 34, 214
Rubiano, 2002, A screened hydrogenic model using analytical potentials, J Quant Spectrosc Radiat Transfer, 72, 575, 10.1016/S0022-4073(01)00142-X
Smith, 2011, A screened hydrogenic model with fine structure splitting, High Energy Density Phys, 7, 1, 10.1016/j.hedp.2010.11.001
More, 1982, Electronic energy-levels in dense plasmas, J Quant Spectrosc Radiat Transfer, 27, 345, 10.1016/0022-4073(82)90127-3
Perrot, 1989, Fast calculation of electronic structure in plasmas, Phys Scr, 39, 10.1088/0031-8949/39/3/011
Marchand, 1990, Improved screening coefficients for the hydrogenic ion model, J Quant Spectrosc Radiat Transfer, 43, 149, 10.1016/0022-4073(90)90043-6
Faussurier, 1997, New screening coefficients for the hydrogenic ion model including l-splitting for fast calculations of atomic structure in plasmas, J Quant Spectrosc Radiat Transfer, 58, 233, 10.1016/S0022-4073(97)00018-6
Mendoza, 2011, A new set of relativistic screening constants for the screened hydrogenic model, High Energy Density Phys, 7, 169, 10.1016/j.hedp.2011.04.006
Ralchenko Y, Jou FC, Kelleher D, Kramida A, Musgrove A, Reader J, et al. NIST atomic spectra database (version 3.1.3). National Institute of Standards and Technology, Gaithersburg, MD. URL [Online] Available: 〈http://physics.nist.gov/asd〉; 2007.
Gu, 2004, The flexible atomic code, AIP Conf Proc, 730, 127, 10.1063/1.1824864
Faussurier, 2008, Equation of state of dense plasmas using a screened-hydrogenic model with l-splitting, High Energy Density Phys, 4, 114, 10.1016/j.hedp.2008.03.002
Zimmerman, 1980, Pressure ionization in laser-fusion target simulation, J Quant Spectrosc Radiat Transfer, 23, 517, 10.1016/0022-4073(80)90055-2
Stewart, 1966, Lowering of ionization potentials in plasmas, Astrophys J, 144, 1203, 10.1086/148714
Kobus, 1987, Matrix elements of rq for quasirelativistic and Dirac hydrogenic wavefunctions, J Phys A: Math Gen, 20, 3347, 10.1088/0305-4470/20/11/037
Ruano, 2012, Relativistic screened hydrogenic radial integrals, J Quant Spectrosc Radiat Transfer, 117, 123, 10.1016/j.jqsrt.2012.11.022
Dimitrijevic, 1987, Simple estimates for Stark broadening of ion lines in stellar plasmas, Astron Astrophys, 172, 345
Goldberg A, Rosznyai BF. Effects of dielectronic satellite broadening on the emission spectra from hot plasma. Technical Report UCRL-95472. Lawrence Livermore National Laboratory; 1986.
Rose, 1992, Calculations of the radiative opacity of laser-produced plasmas, J Phys B: At Mol Phys, 25, 1667, 10.1088/0953-4075/25/7/034
Shalitin, 1984, Level and line broadening for Thomas–Fermi atoms at finite temperature, Phys Rev A, 29, 2789, 10.1103/PhysRevA.29.2789
Stein, 1985, Average-atom models of line broadening in hot dense plasmas, Phys Rev A, 31, 446, 10.1103/PhysRevA.31.446
Menzel, 1935, Absorption coefficients and hydrogen lin intensities, Monthly Notices of the Royal Astronomical Society, 96, 77
More, 1988, A new quotidian equation of state (QEOS) for hot dense matter, Phys Fluids, 31, 3059, 10.1063/1.866963
Yan, 2001, Theoretical study of opacity for a mixture of gold and gadolinium at a high temperature, Phys Rev E, 64, 056401, 10.1103/PhysRevE.64.056401
Rickert A. (Ed.). Proceedings of the third international opacity workshop and code comparison study. Max Planck Institut für Quantenoptik; 1994.
Crowley, 2001, Modelling of plasmas in an average-atom local density approximation, J Quant Spectrosc Radiat Transfer, 71, 257, 10.1016/S0022-4073(01)00073-5
Nikishawa T, Takabe H, Mima K. Corona code description. In: Rickert A, editor. Proceedings of the third international opacity workshop and code comparison study. Max Planck Institut für Quantenoptik; 1994.
Magee N, Merts A, Keady J, Kilcrease D. Ledcop code description. In: Rickert A, editor. Proceedings of the third international opacity workshop and code comparison study. Max-Planck Institut für Quantenoptik; 1994.
Rogers, 1988, Parametric potential method for generating atomic data, Phys Rev A, 38, 5007, 10.1103/PhysRevA.38.5007
Hoarty, 2007, Measurements of niobium absorption spectra in plasmas with nearly full M-shell configurations, High Energy Density Phys, 3, 325, 10.1016/j.hedp.2007.03.001
Orzechowski, 1996, The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures, Phys Rev Lett, 77, 3545, 10.1103/PhysRevLett.77.3545
Yan, 2002, Theoretical investigation of the increase in the Rosseland mean opacity for hot dense mixtures, Phys Rev E, 65, 066401, 10.1103/PhysRevE.65.066401
Orlov, 2011, Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion, Laser Part Beams, 29, 69, 10.1017/S0263034610000777
Yuan, 2002, Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture, Phys Rev E, 66, 047401, 10.1103/PhysRevE.66.047401
Dittrich, 1999, Review of indirect-drive ignition design options for the National Ignition Facility, Phys Plasmas, 6, 2164, 10.1063/1.873467
Samolovskikh L, Loboda P, Luzganova O, Netsvetayev D, Popova V. Calculations of spectral opacities for Be–Cu plasmas using STA and average atom models. In: The 31st EPS conference on plasma physics, ECA, vol. 28G, London; 2004.
Avrorin EN, Vodolaga BK, Simonenko VA, Fortov V. Intense shock waves and extreme states of matter. IVTAN, Moscow; 1990.