Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach

Jintao Ke1, Hongyu Zheng2, Hai Yang1, Xiqun Chen2
1Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from <http://tensorflow.org/>.

Ahmed, 2013, A data fusion framework for real-time risk assessment on freeways, Transp. Res. Part C: Emerg. Technol., 26, 203, 10.1016/j.trc.2012.09.002

Alonso-Mora, 2017, On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment, Proc. Nat. Acad. Sci., 201611675

Antoniou, 2013, Dynamic data-driven local traffic state estimation and prediction, Transp. Res. Part C: Emerg. Technol., 34, 89, 10.1016/j.trc.2013.05.012

Bachmann, 2013, A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling, Transp. Res. Part C: Emerg. Technol., 26, 33, 10.1016/j.trc.2012.07.003

Boto-Giralda, 2010, Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks, Comput.-Aided Civil Infrastruct. Eng., 25, 530, 10.1111/j.1467-8667.2010.00668.x

Box, 1970, Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, J. Am. Stat. Assoc., 65, 1509, 10.1080/01621459.1970.10481180

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Chan, 2012, Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm, IEEE Trans. Intell. Transp. Syst., 13, 644, 10.1109/TITS.2011.2174051

Chen, Q., Song, X., Yamada, H., Shibasaki, R., 2016. Learning deep representation from big and heterogeneous data for traffic accident inference. In: Thirtieth AAAI Conference on Artificial Intelligence.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, ACM. pp. 785–794.

Chen, 2017, Understanding ridesplitting behavior of on-demand ride services: an ensemble learning approach, Transp. Res. Part C: Emerg. Technol., 76, 51, 10.1016/j.trc.2016.12.018

Cheng, Q., Liu, Y., Wei, W., Liu, Z., 2016. Analysis and forecasting of the day-to-day travel demand variations for large-scale transportation networks: a deep learning approach. doi:https://doi.org/10.13140/RG.2.2.12753.53604.

Chollet, F., et al., 2015. Keras. <https://github.com/fchollet/keras>.

Deng, Z., Ji, M., 2011. Spatiotemporal structure of taxi services in shanghai: Using exploratory spatial data analysis. In: The 19th IEEE International Conference on Geoinformatics, pp. 1–5.

Fei, 2011, A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction, Transp. Res. Part C: Emerg. Technol., 19, 1306, 10.1016/j.trc.2010.10.005

Genuer, 2015, Vsurf: An R package for variable selection using random forests, The R Journal, 7, 19, 10.32614/RJ-2015-018

Ghosh, 2009, Multivariate short-term traffic flow forecasting using time-series analysis, IEEE Trans. Intell. Transp. Syst., 10, 246, 10.1109/TITS.2009.2021448

Guo, 2014, Adaptive kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification, Transp. Res. Part C: Emerg. Technol., 43, 50, 10.1016/j.trc.2014.02.006

He, 2015, Modeling taxi services with smartphone-based e-hailing applications, Transp. Res. Part C: Emerg. Technol., 58, 93, 10.1016/j.trc.2015.06.023

Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen ( Ph.D. thesis). diploma thesis, institut für informatik, lehrstuhl prof. brauer, technische universität münchen.

Hochreiter, 1997, Long short-term memory, Neural Comput., 9, 1735, 10.1162/neco.1997.9.8.1735

Huang, 2009, A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting, Transp. Res. Part C: Emerg. Technol., 17, 510, 10.1016/j.trc.2009.04.006

Huang, 2014, Deep architecture for traffic flow prediction: deep belief networks with multitask learning, IEEE Trans. Intell. Transp. Syst., 15, 2191, 10.1109/TITS.2014.2311123

Jiang, 2014, Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in china, Transp. Res. Part C: Emerg. Technol., 44, 110, 10.1016/j.trc.2014.03.016

Khashei, 2012, Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs), Comput. Ind. Eng., 63, 37, 10.1016/j.cie.2012.01.017

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105.

LeCun, 1999, Object recognition with gradient-based learning, Shape Contour Group. Comput. Vision, 1681, 823

Lv, 2015, Traffic flow prediction with big data: a deep learning approach, IEEE Trans. Intell. Transp. Syst., 16, 865

Ma, 2017, Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction, Sensors, 17, 818, 10.3390/s17040818

Ma, 2015, Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, Transp. Res. Part C: Emerg. Technol., 54, 187, 10.1016/j.trc.2015.03.014

Ma, X., Yu, H., Wang, Y., Wang, Y., 2015b. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one 10, e0119044.

Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L., 2012. A predictive model for the passenger demand on a taxi network. In: The 15th IEEE International Conference on Intelligent Transportation Systems, pp. 1014–1019.

Moreira-Matias, 2013, Predicting taxi–passenger demand using streaming data, IEEE Trans. Intell. Transp. Syst., 14, 1393, 10.1109/TITS.2013.2262376

Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825

Polson, 2017, Deep learning for short-term traffic flow prediction, Transp. Res. Part C: Emerg. Technol., 79, 1, 10.1016/j.trc.2017.02.024

Qian, 2015, Spatial variation of the urban taxi ridership using GPS data, Appl. Geography, 59, 31, 10.1016/j.apgeog.2015.02.011

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. California Univ San Diego La Jolla Inst for Cognitive Science.

Rumelhart, 1988, Learning representations by back-propagating errors, Cogn. Model., 5, 1

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810.

Soriguera, 2011, Estimation of traffic stream space mean speed from time aggregations of double loop detector data, Transp. Res. Part C: Emerg. Technol., 19, 115, 10.1016/j.trc.2010.04.004

Sun, 2012, Network-scale traffic modeling and forecasting with graphical lasso and neural networks, J. Transp. Eng., 138, 1358, 10.1061/(ASCE)TE.1943-5436.0000435

Sutskever, I., Hinton, G.E., Taylor, G.W., 2009. The recurrent temporal restricted boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608.

Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In: The 19th IEEE International Conference on Intelligent Transportation Systems, pp. 1071–1076.

Vlahogianni, 2014, Short-term traffic forecasting: where we are and where we’re going, Transp. Res. Part C: Emerg. Technol., 43, 3, 10.1016/j.trc.2014.01.005

Wang, 2014, New Bayesian combination method for short-term traffic flow forecasting, Transp. Res. Part C: Emerg. Technol., 43, 79, 10.1016/j.trc.2014.02.005

Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, Z., 2016a. Traffic speed prediction and congestion source exploration: a deep learning method. In: The 16th IEEE International Conference on Data Mining, pp. 499–508.

Wang, 2013, Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory, Transp. Res. Part C: Emerg. Technol., 27, 219, 10.1016/j.trc.2012.08.004

Wang, 2016, Pricing strategies for a taxi-hailing platform, Transp. Res. Part E: Logist. Transp. Rev., 93, 212, 10.1016/j.tre.2016.05.011

Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y., 2017. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst., in press, https://doi.org/10.1109/TITS.2017.2706963.

Wei, 2012, Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks, Transp. Res. Part C: Emerg. Technol., 21, 148, 10.1016/j.trc.2011.06.009

Williams, 1989, A learning algorithm for continually running fully recurrent neural networks, Neural Comput., 1, 270, 10.1162/neco.1989.1.2.270

Yang, 2010, Nonlinear pricing of taxi services, Transp. Res. Part A: Policy Pract., 44, 337

Yang, 2010, Equilibria of bilateral taxi–customer searching and meeting on networks, Transp. Res. Part B: Methodol., 44, 1067, 10.1016/j.trb.2009.12.010

Yang, 2002, Demand–supply equilibrium of taxi services in a network under competition and regulation, Transp. Res. Part B: Methodol., 36, 799, 10.1016/S0191-2615(01)00031-5

Yang, 2011, Equilibrium properties of taxi markets with search frictions, Transp. Res. Part B: Methodol., 45, 696, 10.1016/j.trb.2011.01.002

Yang, 2005, A multiperiod dynamic model of taxi services with endogenous service intensity, Oper. Res., 53, 501, 10.1287/opre.1040.0181

Yu, 2011, Bus arrival time prediction at bus stop with multiple routes, Transp. Res. Part C: Emerg. Technol., 19, 1157, 10.1016/j.trc.2011.01.003

Yu, 2017, Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks, Sensors, 17, 1501, 10.3390/s17071501

Yu, 2014, Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management, IEEE Trans. Intell. Transp. Syst., 15, 205, 10.1109/TITS.2013.2276089

Zha, 2016, Economic analysis of ride-sourcing markets, Transp. Res. Part C: Emerg. Technol., 71, 249, 10.1016/j.trc.2016.07.010

Zhang, 2017, Taxi-passenger-demand modeling based on big data from a roving sensor network, IEEE Trans. Big Data, 3, 362, 10.1109/TBDATA.2016.2627224

Zhang, J., Zheng, Y., Qi, D., 2017b. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: AAAI, pp. 1655–1661.

Zhang, 2011, Seasonal autoregressive integrated moving average and support vector machine models: prediction of short-term traffic flow on freeways, Transp. Res. Rec.: J. Transp. Res. Board, 2215, 85, 10.3141/2215-09

Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016. Predicting taxi demand at high spatial resolution: approaching the limit of predictability. In: IEEE International Conference on Big Data.

Zhao, 2017, Lstm network: a deep learning approach for short-term traffic forecast, IET Intel. Transp. Syst., 11, 68, 10.1049/iet-its.2016.0208

Zhu, 2014, Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections, Transp. Res. Part C: Emerg. Technol., 47, 139, 10.1016/j.trc.2014.06.011