Effect of operating conditions on osmotic-driven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane

Desalination - Tập 362 - Trang 34-42 - 2015
Masatoyo Shibuya1, Masahiro Yasukawa1, Tomoki Takahashi1, Takayuki Miyoshi1, Mitsuru Higa1,2, Hideto Matsuyama1
1Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
2Department of Applied Fine Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube, Yamaguchi 755-8611, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

McCutcheon, 2006, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278, 114, 10.1016/j.memsci.2005.10.048

Phuntsho, 2012, Influence of temperature and temperature difference in the performance of forward osmosis desalination process, J. Membr. Sci., 415–416, 734, 10.1016/j.memsci.2012.05.065

Sairam, 2011, Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—desalination using MgSO4 draw solution, Desalination, 273, 299, 10.1016/j.desal.2011.01.050

Hickenbottom, 2013, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination, 312, 60, 10.1016/j.desal.2012.05.037

Zhang, 2013, A novel ethanol dehydration process by forward osmosis, Chem. Eng. J., 232, 397, 10.1016/j.cej.2013.07.106

Ling, 2011, Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes, J. Membr. Sci., 372, 201, 10.1016/j.memsci.2011.02.003

Achilli, 2009, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343, 42, 10.1016/j.memsci.2009.07.006

Thompson, 2011, Forward osmosis desalination: a commercial reality

Wang, 2010, Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer, Ind. Eng. Chem. Res., 49, 4824, 10.1021/ie901592d

Achilli, 2009, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination, 239, 10, 10.1016/j.desal.2008.02.022

Cornelissen, 2008, Membrane fouling and process performance of forward osmosis membranes on activated sludge, J. Membr. Sci., 319, 158, 10.1016/j.memsci.2008.03.048

Gray, 2006, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197, 1, 10.1016/j.desal.2006.02.003

Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013

Zhang, 2010, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci., 360, 522, 10.1016/j.memsci.2010.05.056

Yip, 2010, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44, 3812, 10.1021/es1002555

Tiraferri, 2011, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367, 340, 10.1016/j.memsci.2010.11.014

Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z

Ma, 2012, Zeolite–polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Membr. Sci., 405–406, 149, 10.1016/j.memsci.2012.03.002

Wang, 2012, Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization, AICHE J., 58, 770, 10.1002/aic.12635

Widjojo, 2011, The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 383, 214, 10.1016/j.memsci.2011.08.041

Song, 2011, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Adv. Mater., 23, 3256, 10.1002/adma.201100510

Li, 2012, Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes, Ind. Eng. Chem. Res., 51, 10039, 10.1021/ie2027052

Qiu, 2011, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, J. Membr. Sci., 381, 74, 10.1016/j.memsci.2011.07.013

Qi, 2012, Double-skinned forward osmosis membranes based on layer-by-layer assembly-FO performance and fouling behavior, J. Membr. Sci., 405–406, 20, 10.1016/j.memsci.2012.02.032

Chou, 2012, Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density, J. Membr. Sci., 389, 25, 10.1016/j.memsci.2011.10.002

Fang, 2012, Composite forward osmosis hollow fiber membranes: integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization, J. Membr. Sci., 394–395, 140, 10.1016/j.memsci.2011.12.034

Bowen, 2006, Biomimetic separations — learning from the early development of biological membranes, Desalination, 199, 225, 10.1016/j.desal.2006.03.053

Sui, 2001, Structural basis of water specific transport through the AQP1 water channel, Nature, 414, 872, 10.1038/414872a

Gong, 2007, A charge-driven molecular water pump, Nat. Nanotechnol., 2, 709, 10.1038/nnano.2007.320

Kumar, 2007, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci., 104, 20719, 10.1073/pnas.0708762104

Wang, 2012, Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z, Small, 8, 1185, 10.1002/smll.201102120

Su, 2011, Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes, J. Membr. Sci., 376, 214, 10.1016/j.memsci.2011.04.031

Wang, 2010, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355, 158, 10.1016/j.memsci.2010.03.017

Sukitpaneenit, 2012, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environ. Sci. Technol., 46, 7358, 10.1021/es301559z

Chou, 2010, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination, 261, 365, 10.1016/j.desal.2010.06.027

Setiawan, 2011, Fabrication of novel poly(amideimide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer, J. Membr. Sci., 369, 196, 10.1016/j.memsci.2010.11.067

Chang, 2002, Modeling and optimizing submerged hollow fiber membrane modules, AICHE J., 48, 2203, 10.1002/aic.690481011

Yoon, 2004, Optimization model of submerged hollow fiber membrane modules, J. Membr. Sci., 234, 147, 10.1016/j.memsci.2004.01.018

Gill, 1973, Hollow fiber reverse-osmosis systems: analysis and design, AICHE J., 19, 823, 10.1002/aic.690190422

Xiao, 2012, A modeling investigation on optimizing the design of forward osmosis hollow fiber modules, J. Membr. Sci., 392–393, 76, 10.1016/j.memsci.2011.12.006

Kim, 2011, Experimental study of a 4040 spiral-wound forward-osmosis membrane module, Environ. Sci. Technol., 45, 7737, 10.1021/es202175m

Kim, 2014, Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate, Chem. Eng. Res. Des

TOYOBO Co. Ltd., private communication.

McCutcheon, 2007, Modeling water flux in forward osmosis: implications for improved membrane design, AICHE J., 53, 1736, 10.1002/aic.11197

Reali, 1990, Computation of salt concentration profiles in the porous substrate of anisotropic membranes under steady pressure-retarded-osmosis conditions, J. Membr. Sci., 48, 181, 10.1016/0376-7388(90)85004-5

McCutcheon, 2006, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284, 237, 10.1016/j.memsci.2006.07.049

Tan, 2008, Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations, J. Membr. Sci., 324, 209, 10.1016/j.memsci.2008.07.020

Park, 2011, Determination of a constant membrane structure parameter in forward osmosis processes, J. Membr. Sci., 375, 241, 10.1016/j.memsci.2011.03.052

Tang, 2011, Modeling double-skinned FO membranes, Desalination, 283, 178, 10.1016/j.desal.2011.02.026

Hancock, 2011, Comprehensive bench-and pilot-scale investigation of trace organic compounds rejection by forward osmosis, Environ. Sci. Technol., 45, 8483, 10.1021/es201654k

Tang, 2010, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci., 354, 123, 10.1016/j.memsci.2010.02.059

McCutcheon, 2008, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318, 458, 10.1016/j.memsci.2008.03.021

Yasukawa, 2014, Development of analysis method for forward osmosis hollow fiber membrane performance, Bull. Soc. Sea Water Sci. Jpn., 68, 94

Itoh, 2011, Development of high performance CTA hollow-fiber RO module for wastewater reclamation

Blandin, 2014

Thorsen, 2009, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335, 103, 10.1016/j.memsci.2009.03.003

Phillip, 2010, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44, 5170, 10.1021/es100901n

She, 2012, Osmotic power production from salinity gradient resource by pressure retarded osmosis: effects of operating conditions and reverse solute diffusion, J. Membr. Sci., 401–402, 262, 10.1016/j.memsci.2012.02.014

Yong, 2012, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes, J. Membr. Sci., 392–393, 9, 10.1016/j.memsci.2011.11.020

Robinson, 1965

Ooe, 2011

Harned, 1950, Physical chemistry of electrolytic solutions, 95

Kestin, 1978, Viscosity of liquid water in the range −8°C to 150°C, J. Phys. Chem. Ref. Data, 7, 941, 10.1063/1.555581

Lobo, 1993, Mutual diffusion coefficients in aqueous electrolyte solutions (technical report), Pure Appl. Chem., 65, 2613, 10.1351/pac199365122613

Geise, 2011, Water permeability and water/salt selectivity tradeoff in polymers for desalination, J. Membr. Sci., 369, 130, 10.1016/j.memsci.2010.11.054

Tian, 2013, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Sep. Purif. Technol., 118, 727, 10.1016/j.seppur.2013.08.021

Widjojo, 2013, A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO), Chem. Eng. J., 220, 15, 10.1016/j.cej.2013.01.007

Shi, 2011, Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes, J. Membr. Sci., 382, 116, 10.1016/j.memsci.2011.07.045

Klaysom, 2013, Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: film optimization, characterization and performance evaluation, J. Membr. Sci., 445, 25, 10.1016/j.memsci.2013.05.037