Electrochemical and thermal insertion of lithium and magnesium into Zr5Sn3

Springer Science and Business Media LLC - Tập 19 - Trang 2481-2490 - 2015
Agnieszka Balińska1, Vasyl Kordan2, Renata Misztal1, Volodymyr Pavlyuk1,2
1Institute of Chemistry, Environmental Protection and Biotechnology, Częstochowa Jan Długosz University, Częstochowa, Poland
2Department of Inorganic Chemistry, Ivan Franko Lviv National University, Lviv, Ukraine

Tóm tắt

The Zr5Sn3 intermetallic compound has been studied as a possible anode material for lithium- and magnesium-ion batteries. The Zr5Sn3Li x electrodes provide a reversible specific capacity of 160–140 mAh g−1, whereas Zr5Sn3Mg x electrodes yield a slightly lower capacity of 110–95 mAh g−1. The lithiation and magnesiation of Zr5Sn3 were investigated by means of X-ray, scanning electron microscopy, microprobe analyses, and electrochemical measurements. The electrochemical lithiation and magnesiation occurs in two stages, the first is the insertion of Li/Mg into structural voids, and the second stage is the decomposition of the hexagonal phase into new phases and substitution of tin atoms by Li/Mg.

Tài liệu tham khảo

Besenhard JO (1999) Handbook of battery materials. Wiley-VCH, Weinheim Vincent CA, Scrosati B (1997) Modern batteries an introduction to electrochemical power sources, 2nd edn. Arnold, London Berndt D (1993) Maintenance-free batteries. Research Studies Press, Taunton Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6:156–183 Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126–1127 Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301 Whittingham MS (2008) Materials challenges facing electrical energy storage. MRS Bull 33:411–419 Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367 Chen J (2013) A review of nanostructured lithium ion battery materials via low temperature synthesis. Nanotechnology 7:2–12 Chumak I, Dmytriv G, Pavlyuk V, Oswald S, Eckert J, Trill H, Eckert H (2010) Li(Al1–zZnz) alloys as anode materials for rechargeable Li-ion batteries. J Mater Res 25:1492–1499 Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50 Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279 Levi E, Gofer Y, Aurbach D (2010) On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem Mater 22:860–868 Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727 Mohtadi R, Mizuno F (2014) Beilstein Magnesium batteries: Current state of the art, issues and future perspectives. J Nanotechnol 5:1291–1311 Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49:149–151 Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137:775–780 Pavlyuk VV, Bodak OI (1995) In: Effenberg G, Aldinger F, Prince A (eds) Ternary alloys—evaluated constitutional data, phase diagrams, crystal structures and applications of lithium alloy systems,. VCH, Weinheim Pöttgen R, Dinges T, Eckert H, Sreeraj P, Wiemhöfer HD (2010) Lithium-transition metal-tetrelides – structure and lithium mobility. Z Phys Chem 224:1475–1504 Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430 Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24 Langer T, Dupke S, Dippel C, Eckert H, Pöttgen R (2012) LiBC — synthesis, electrochemical and solid-state NMR investigations. Z Naturforsch B67:1212–1220 Choi W, Lee JY, Lim HS (2004) Electrochemical lithiation reactions of Cu6Sn5 and their reaction products. Electrochem Commun 6:816–820 Pavlyuk V, Dmytriv G, Tarasiuk I, Chumak I, Ehrenberg H (2011) Li12Cu12.60Al14.37: a new ternary derivative of the binary Laves phases. Acta Crystallogr C67:i59–i62 Pavlyuk V, Dmytriv G, Tarasiuk I, Pauly H, Ehrenberg H (2008) Li8Cu12+xAl6−x (x = 1.16): a new structure type related to Laves phases. Acta Crystallogr C64:i15–i17 Dmytriv G, Pavlyuk V, Tarasiuk I, Ehrenberg H, Chumak I, Pauly H (2010) Crystal structure of the Li18Cu15Al7 intermetallic compound. Acta Crystallogr A66:150–151 Dmytriv G, Pauly H, Ehrenberg H, Pavlyuk V, Vollmar E (2005) Homogeneity range of the NaTl-type Zintl phase in the ternary system Li–In–Ag. J Solid State Chem 178:2825–2831 Pavlyuk V, Dmytriv G, Chumak I, Ehrenberg H, Pauly H (2005) The crystal structure of the LiAg2In compound. J Solid State Chem 178:3303–3307 Pavlyuk V, Dmytriv G, Tarasiuk I, Pauly H, Ehrenberg H (2007) The ternary indide Li278(In,Ag)154: a new n = 6 variant of cubic nxnxn W-type superstructures. Intermetallics 15:1409–1415 Sreeraj P, Wiemhöfer HD, Hoffmann RD, Walter J, Kirfel A, Pöttgen R (2006) Neutron diffraction and electrochemical studies on Li1-xAg2Sn. Solid State Sci 8:843–848 Lacroix-Orio L, Tillard M, Belin C (2008) Synthesis, crystal and electronic structure of Li13Ag5Si6, a potential anode for Li-ion batteries. Solid State Sci 10:5–11 Chumak I, Pavlyuk V, Dmytriv G, Pauly H, Ehrenberg H (2013) The crystal and electronic structures of the Li2−xAg1+xIn3 (x = 0.05) indide. J Solid State Chem 197:248–253 Dmytriv G, Pavlyuk V, Pauly H, Eckert J, Ehrenberg H (2011) New real ternary and pseudoternary phases in the Li-Au-In-system. J Solid State Chem 184:1328–1332 Pavlyuk VV, Kevorkov DG, Bodak OI, Pecharskii VK (1995) Crystal structure of the Li13Pd12Si12. Kristallografiya 40:183–184 Pavlyuk VV, Pecharskii VK, Bodak OI (1989) Crystal structure of the Li2Pd2.7Ge2.3 compound. Kristallografiya 34:306–309 Alcántara R, Tillard-Charbonnel M, Spina L, Belin C, Tirado JL (2002) Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. Electrochim Acta 47:1115–1120 Dmytriv G, Pavlyuk V, Tarasiuk I, Pauly H, Ehrenberg H, Marciniak B, Prochwicz W, Schroeder G (2007) Li-Zn-{Al,Sn} Zintl Phase alloys for the anode materials of lithium batteries. Visn Lviv Univ Ser Khim 48:172–178 Pavlyuk V, Chumak I, Akselrud L, Lidin S, Ehrenberg H (2014) LiZn4- x (x = 0.825) as a (3 + 1)-dimensional modulated derivative of hexagonal close packing. Acta Crystallogr B70:212–217 Pavlyuk V, Chumak I, Ehrenberg H (2012) Polymorphism of Li2Zn3. Acta Crystallogr B68:34–39 Vaughey JT, Thackeray MM, Shin D, Wolverton C (2009) Studies of LaSn3 as a negative electrode for lithium-ion batteries. J Electrochem Soc 156:536–540 Pavlyuk V, Stetskiv A, Rożdżyńska-Kiełbik B (2013) The isothermal section of the phase diagram of Li-La-Ge ternary system at 400oC. Intermetallics 43:29–37 Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B192:55–69 CrysecondsAlis PRO (2011) Agilent technologies, Yarnton Sheldrick GM (1997) SHELXS, program for the solution of crystal structures. University of Goettingen, Germany Sheldrick GM (1997) SHELXL-97, program for crystal structure refinement. University of Goettingen, Germany Andersen OK (1975) Linear methods in band theory. Phys Rev B12:3060–3117 Andersen OK, Jepsen O (1984) Explicit, First-Principles Tight-Binding Theory. Phys Rev Lett 53:2571–2574 Andersen OK, Pawlowska Z, Jepsen O (1986) Illustration of the linear-muffin-tin-orbital tight-binding representation: Compact orbitals and charge density in Si. Phys Rev B34:5253–5269. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. i. J Phys C Solid State 5:1629–1714