Electrochemical and thermal insertion of lithium and magnesium into Zr5Sn3
Tóm tắt
The Zr5Sn3 intermetallic compound has been studied as a possible anode material for lithium- and magnesium-ion batteries. The Zr5Sn3Li
x
electrodes provide a reversible specific capacity of 160–140 mAh g−1, whereas Zr5Sn3Mg
x
electrodes yield a slightly lower capacity of 110–95 mAh g−1. The lithiation and magnesiation of Zr5Sn3 were investigated by means of X-ray, scanning electron microscopy, microprobe analyses, and electrochemical measurements. The electrochemical lithiation and magnesiation occurs in two stages, the first is the insertion of Li/Mg into structural voids, and the second stage is the decomposition of the hexagonal phase into new phases and substitution of tin atoms by Li/Mg.
Tài liệu tham khảo
Besenhard JO (1999) Handbook of battery materials. Wiley-VCH, Weinheim
Vincent CA, Scrosati B (1997) Modern batteries an introduction to electrochemical power sources, 2nd edn. Arnold, London
Berndt D (1993) Maintenance-free batteries. Research Studies Press, Taunton
Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6:156–183
Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126–1127
Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301
Whittingham MS (2008) Materials challenges facing electrical energy storage. MRS Bull 33:411–419
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367
Chen J (2013) A review of nanostructured lithium ion battery materials via low temperature synthesis. Nanotechnology 7:2–12
Chumak I, Dmytriv G, Pavlyuk V, Oswald S, Eckert J, Trill H, Eckert H (2010) Li(Al1–zZnz) alloys as anode materials for rechargeable Li-ion batteries. J Mater Res 25:1492–1499
Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50
Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279
Levi E, Gofer Y, Aurbach D (2010) On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem Mater 22:860–868
Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727
Mohtadi R, Mizuno F (2014) Beilstein Magnesium batteries: Current state of the art, issues and future perspectives. J Nanotechnol 5:1291–1311
Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49:149–151
Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137:775–780
Pavlyuk VV, Bodak OI (1995) In: Effenberg G, Aldinger F, Prince A (eds) Ternary alloys—evaluated constitutional data, phase diagrams, crystal structures and applications of lithium alloy systems,. VCH, Weinheim
Pöttgen R, Dinges T, Eckert H, Sreeraj P, Wiemhöfer HD (2010) Lithium-transition metal-tetrelides – structure and lithium mobility. Z Phys Chem 224:1475–1504
Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430
Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24
Langer T, Dupke S, Dippel C, Eckert H, Pöttgen R (2012) LiBC — synthesis, electrochemical and solid-state NMR investigations. Z Naturforsch B67:1212–1220
Choi W, Lee JY, Lim HS (2004) Electrochemical lithiation reactions of Cu6Sn5 and their reaction products. Electrochem Commun 6:816–820
Pavlyuk V, Dmytriv G, Tarasiuk I, Chumak I, Ehrenberg H (2011) Li12Cu12.60Al14.37: a new ternary derivative of the binary Laves phases. Acta Crystallogr C67:i59–i62
Pavlyuk V, Dmytriv G, Tarasiuk I, Pauly H, Ehrenberg H (2008) Li8Cu12+xAl6−x (x = 1.16): a new structure type related to Laves phases. Acta Crystallogr C64:i15–i17
Dmytriv G, Pavlyuk V, Tarasiuk I, Ehrenberg H, Chumak I, Pauly H (2010) Crystal structure of the Li18Cu15Al7 intermetallic compound. Acta Crystallogr A66:150–151
Dmytriv G, Pauly H, Ehrenberg H, Pavlyuk V, Vollmar E (2005) Homogeneity range of the NaTl-type Zintl phase in the ternary system Li–In–Ag. J Solid State Chem 178:2825–2831
Pavlyuk V, Dmytriv G, Chumak I, Ehrenberg H, Pauly H (2005) The crystal structure of the LiAg2In compound. J Solid State Chem 178:3303–3307
Pavlyuk V, Dmytriv G, Tarasiuk I, Pauly H, Ehrenberg H (2007) The ternary indide Li278(In,Ag)154: a new n = 6 variant of cubic nxnxn W-type superstructures. Intermetallics 15:1409–1415
Sreeraj P, Wiemhöfer HD, Hoffmann RD, Walter J, Kirfel A, Pöttgen R (2006) Neutron diffraction and electrochemical studies on Li1-xAg2Sn. Solid State Sci 8:843–848
Lacroix-Orio L, Tillard M, Belin C (2008) Synthesis, crystal and electronic structure of Li13Ag5Si6, a potential anode for Li-ion batteries. Solid State Sci 10:5–11
Chumak I, Pavlyuk V, Dmytriv G, Pauly H, Ehrenberg H (2013) The crystal and electronic structures of the Li2−xAg1+xIn3 (x = 0.05) indide. J Solid State Chem 197:248–253
Dmytriv G, Pavlyuk V, Pauly H, Eckert J, Ehrenberg H (2011) New real ternary and pseudoternary phases in the Li-Au-In-system. J Solid State Chem 184:1328–1332
Pavlyuk VV, Kevorkov DG, Bodak OI, Pecharskii VK (1995) Crystal structure of the Li13Pd12Si12. Kristallografiya 40:183–184
Pavlyuk VV, Pecharskii VK, Bodak OI (1989) Crystal structure of the Li2Pd2.7Ge2.3 compound. Kristallografiya 34:306–309
Alcántara R, Tillard-Charbonnel M, Spina L, Belin C, Tirado JL (2002) Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. Electrochim Acta 47:1115–1120
Dmytriv G, Pavlyuk V, Tarasiuk I, Pauly H, Ehrenberg H, Marciniak B, Prochwicz W, Schroeder G (2007) Li-Zn-{Al,Sn} Zintl Phase alloys for the anode materials of lithium batteries. Visn Lviv Univ Ser Khim 48:172–178
Pavlyuk V, Chumak I, Akselrud L, Lidin S, Ehrenberg H (2014) LiZn4- x (x = 0.825) as a (3 + 1)-dimensional modulated derivative of hexagonal close packing. Acta Crystallogr B70:212–217
Pavlyuk V, Chumak I, Ehrenberg H (2012) Polymorphism of Li2Zn3. Acta Crystallogr B68:34–39
Vaughey JT, Thackeray MM, Shin D, Wolverton C (2009) Studies of LaSn3 as a negative electrode for lithium-ion batteries. J Electrochem Soc 156:536–540
Pavlyuk V, Stetskiv A, Rożdżyńska-Kiełbik B (2013) The isothermal section of the phase diagram of Li-La-Ge ternary system at 400oC. Intermetallics 43:29–37
Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B192:55–69
CrysecondsAlis PRO (2011) Agilent technologies, Yarnton
Sheldrick GM (1997) SHELXS, program for the solution of crystal structures. University of Goettingen, Germany
Sheldrick GM (1997) SHELXL-97, program for crystal structure refinement. University of Goettingen, Germany
Andersen OK (1975) Linear methods in band theory. Phys Rev B12:3060–3117
Andersen OK, Jepsen O (1984) Explicit, First-Principles Tight-Binding Theory. Phys Rev Lett 53:2571–2574
Andersen OK, Pawlowska Z, Jepsen O (1986) Illustration of the linear-muffin-tin-orbital tight-binding representation: Compact orbitals and charge density in Si. Phys Rev B34:5253–5269.
von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. i. J Phys C Solid State 5:1629–1714
