Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2–TiO2 catalyst for dry reforming of methane
Tài liệu tham khảo
Rostrupnielsen, 1993, CO2-reforming of methane over transition metals, J. Catal., 144, 38, 10.1006/jcat.1993.1312
Bradford, 1999, CO2 reforming of CH4, Catal. Rev. Sci. Eng., 41, 1, 10.1081/CR-100101948
Ashcroft, 1991, Partial oxidation of methane to synthesis gas using carbon dioxide, Nature, 352, 225, 10.1038/352225a0
Takano, 1994, Carbon dioxide reforming of methane on supported nickel catalysts, Chem. Eng. Jpn., 27, 727, 10.1252/jcej.27.727
Chavadej, 2005, Partial oxidation of methane and carbon dioxide reforming with methane corona discharge with/without Pt/KL catalyst, J. Chem. Eng. Jpn., 38, 163, 10.1252/jcej.38.163
Kusakabe, 2006, Methane steam reforming in a zirconia membrane reactor, Chem. Eng. Jpn., 39, 444, 10.1252/jcej.39.444
Dias, 2003, Influence of calcium content in Ni/CaO/gamma-Al2O3 catalysts for CO2-reforming of methane, Catal. Today, 85, 59, 10.1016/S0920-5861(03)00194-9
Tang, 2000, CO2 reforming of methane to synthesis gas over sol–gel made Ni/r-Al2O3 catalysts from organometallic precursor, J. Catal., 194, 424, 10.1006/jcat.2000.2957
Valderrama, 2008, Dry reforming of CH4 over solid solutions of LaNi1−xCoxO3, Catal. Today, 142, 133
Crisafulli, 1999, CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts, Catal. Lett., 59, 21, 10.1023/A:1019031412713
Crisafulli, 2002, Ni–Ru bimetallic catalysts for the CO2 reforming of CH4, Appl. Catal. A, 225, 1, 10.1016/S0926-860X(01)00585-3
Zhang, 2008, Effect of calcinations temperature on structure and performance of Ni/TiO2–SiO2 catalyst for CO2 reforming of methane, Nat. Gas. Chem., 17, 179, 10.1016/S1003-9953(08)60048-1
Osaki, 2001, Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts, J. Catal., 204, 89, 10.1006/jcat.2001.3382
Arena, 1999, Alkali promotion of Ni/MgO catalysts, Appl. Catal. A, 187, 127, 10.1016/S0926-860X(99)00196-9
Erdohelyi, 1993, Activation of CH4 and its reaction with CO2 over supported Rh catalysts, J. Catal., 141, 287, 10.1006/jcat.1993.1136
Zhang, 1996, Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts, J. Catal., 158, 51, 10.1006/jcat.1996.0005
Bradford, 1996, Catalytic reforming of methane with carbon dioxide over nickel catalysts. I. Catalyst characterization and activity, Appl. Catal. A, 142, 73, 10.1016/0926-860X(96)00065-8
Bitter, 1998, Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts, J. Catal., 176, 93, 10.1006/jcat.1998.2022
Nagaoka, 2001, Carbon deposition during carbon dioxide reforming of methane—comparison between Pt/Al2O3 and Pt/ZrO2, J. Catal., 197, 34, 10.1006/jcat.2000.3062
Nagaoka, 2001, Titania supported ruthenium as a coking-resistant catalyst for high pressure dry reforming of methane, Catal. Commun., 2, 255, 10.1016/S1566-7367(01)00043-7
Bradford, 1997, Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts, Catal. Lett., 48, 31, 10.1023/A:1019022903491
Osaki, 1997, Effect of reduction temperature on the CO2-reforming of methane over TiO2-supported Ni catalyst, Chem. Soc. Faraday Trans., 93, 643, 10.1039/a606190g
Nagaoka, 2002, Influence of the phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane, Catal. Commun., 2, 1006
Nagaoka, 2003, Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane, Appl. Catal. A, 255, 13, 10.1016/S0926-860X(03)00631-8
Nagaoka, 2004, Modification of Co/TiO2 for dry reforming of methane at 2MPa by Pt, Ru or Ni, Appl. Catal. A, 268, 151, 10.1016/j.apcata.2004.03.029
Nagaoka, 2005, Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure, J. Catal., 230, 75, 10.1016/j.jcat.2004.11.005
Kim, 2011, Effect of CeO2 addition to Rh/Al2O3 catalyst on N2O decomposition, Chem. Eng. J., 169, 173, 10.1016/j.cej.2011.03.001
Panagiotopoulou, 2006, Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction, Catal. Today, 112, 49, 10.1016/j.cattod.2005.11.026
Laosiripojana, 2005, Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B, 60, 107, 10.1016/j.apcatb.2005.03.001
Pompeo, 2009, Stability improvements of Ni/alpha-Al2O3 catalysts to obtain hydrogen from methane reforming, Int. J. Hydrogen Energy, 34, 2260, 10.1016/j.ijhydene.2008.12.057
Goguet, 2004, Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO2 catalyst, J. Phys. Chem. B, 108, 20240, 10.1021/jp047242w
Ye, 2008, Steam reforming of ethanol over Ni/CexTi1−xO2 catalysts, Int. J. Hydrogen Energy, 33, 6602, 10.1016/j.ijhydene.2008.08.036
Yang, 2011, Influence of the structure of TiO2, CeO2, and CeO2–TiO2 supports on the activity of Ru catalysts in the catalytic wet air oxidation of acetic acid, Rare Metals, 30, 488, 10.1007/s12598-011-0417-z
Liu, 2008, Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas, Catal. Commun., 9, 51, 10.1016/j.catcom.2007.05.002
Kim, 2012, Effect of pretreatment time in dry reforming over Ni/TiO2 catalyst, J. Chem. Eng. Jpn., 45, 41, 10.1252/jcej.11we080
Yan, 2003, Activation of methane to syngas over a Ni/TiO2 catalyst, Appl. Catal. A, 239, 43, 10.1016/S0926-860X(02)00351-4
Bellido, 2009, Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane, Appl. Catal. A, 358, 215, 10.1016/j.apcata.2009.02.014
Hou, 2004, Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane, Appl. Suf. Sci., 233, 58, 10.1016/j.apsusc.2004.03.223
Castro Luna, 2008, Carbon dioxide reforming of methane over a metal modified Ni–Al2O3 catalyst, Appl. Catal. A, 343, 10, 10.1016/j.apcata.2007.11.041
Pechimuthu, 2007, Deactivation studies over Ni–K/CeO2–Al2O3 catalyst for dry reforming of methane, Ind. Eng. Chem. Res., 46, 1731, 10.1021/ie061389n
Kim, 2012, A study on the effect of support’s reducibility on the reverse water gas shift reaction over Pt catalysts, Appl. Catal. A, 423–424, 100
Kim, 2012, The effect of the morphological characteristics of TiO2 support on reverse water gas shift reaction over Pt/TiO2 catalysts, Appl. Catal. B, 119–120, 100
Kim, 2013, A study of the selectivity on reverse water gas shift reaction over Pt/TiO2 catalysts, Fuel Process. Technol., 108, 47, 10.1016/j.fuproc.2012.04.003