Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2–TiO2 catalyst for dry reforming of methane

Chemical Engineering Journal - Tập 280 - Trang 433-440 - 2015
Sung Su Kim1, Sang Moon Lee2, Jong Min Won1, Hee Jae Yang3, Sung Chang Hong1
1Department of Environmental Energy Engineering, Kyonggi University, 94 San, Iui-dong, Youngtong-ku, Suwon-si, Gyeonggi-do 442-760, Republic of Korea
2Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
3Department of Material Engineering, University of British Columbia, 6350 Stores Rd., Vancouver, BC V6T 1Z4, Canada

Tài liệu tham khảo

Rostrupnielsen, 1993, CO2-reforming of methane over transition metals, J. Catal., 144, 38, 10.1006/jcat.1993.1312 Bradford, 1999, CO2 reforming of CH4, Catal. Rev. Sci. Eng., 41, 1, 10.1081/CR-100101948 Ashcroft, 1991, Partial oxidation of methane to synthesis gas using carbon dioxide, Nature, 352, 225, 10.1038/352225a0 Takano, 1994, Carbon dioxide reforming of methane on supported nickel catalysts, Chem. Eng. Jpn., 27, 727, 10.1252/jcej.27.727 Chavadej, 2005, Partial oxidation of methane and carbon dioxide reforming with methane corona discharge with/without Pt/KL catalyst, J. Chem. Eng. Jpn., 38, 163, 10.1252/jcej.38.163 Kusakabe, 2006, Methane steam reforming in a zirconia membrane reactor, Chem. Eng. Jpn., 39, 444, 10.1252/jcej.39.444 Dias, 2003, Influence of calcium content in Ni/CaO/gamma-Al2O3 catalysts for CO2-reforming of methane, Catal. Today, 85, 59, 10.1016/S0920-5861(03)00194-9 Tang, 2000, CO2 reforming of methane to synthesis gas over sol–gel made Ni/r-Al2O3 catalysts from organometallic precursor, J. Catal., 194, 424, 10.1006/jcat.2000.2957 Valderrama, 2008, Dry reforming of CH4 over solid solutions of LaNi1−xCoxO3, Catal. Today, 142, 133 Crisafulli, 1999, CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts, Catal. Lett., 59, 21, 10.1023/A:1019031412713 Crisafulli, 2002, Ni–Ru bimetallic catalysts for the CO2 reforming of CH4, Appl. Catal. A, 225, 1, 10.1016/S0926-860X(01)00585-3 Zhang, 2008, Effect of calcinations temperature on structure and performance of Ni/TiO2–SiO2 catalyst for CO2 reforming of methane, Nat. Gas. Chem., 17, 179, 10.1016/S1003-9953(08)60048-1 Osaki, 2001, Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts, J. Catal., 204, 89, 10.1006/jcat.2001.3382 Arena, 1999, Alkali promotion of Ni/MgO catalysts, Appl. Catal. A, 187, 127, 10.1016/S0926-860X(99)00196-9 Erdohelyi, 1993, Activation of CH4 and its reaction with CO2 over supported Rh catalysts, J. Catal., 141, 287, 10.1006/jcat.1993.1136 Zhang, 1996, Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts, J. Catal., 158, 51, 10.1006/jcat.1996.0005 Bradford, 1996, Catalytic reforming of methane with carbon dioxide over nickel catalysts. I. Catalyst characterization and activity, Appl. Catal. A, 142, 73, 10.1016/0926-860X(96)00065-8 Bitter, 1998, Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts, J. Catal., 176, 93, 10.1006/jcat.1998.2022 Nagaoka, 2001, Carbon deposition during carbon dioxide reforming of methane—comparison between Pt/Al2O3 and Pt/ZrO2, J. Catal., 197, 34, 10.1006/jcat.2000.3062 Nagaoka, 2001, Titania supported ruthenium as a coking-resistant catalyst for high pressure dry reforming of methane, Catal. Commun., 2, 255, 10.1016/S1566-7367(01)00043-7 Bradford, 1997, Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts, Catal. Lett., 48, 31, 10.1023/A:1019022903491 Osaki, 1997, Effect of reduction temperature on the CO2-reforming of methane over TiO2-supported Ni catalyst, Chem. Soc. Faraday Trans., 93, 643, 10.1039/a606190g Nagaoka, 2002, Influence of the phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane, Catal. Commun., 2, 1006 Nagaoka, 2003, Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane, Appl. Catal. A, 255, 13, 10.1016/S0926-860X(03)00631-8 Nagaoka, 2004, Modification of Co/TiO2 for dry reforming of methane at 2MPa by Pt, Ru or Ni, Appl. Catal. A, 268, 151, 10.1016/j.apcata.2004.03.029 Nagaoka, 2005, Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure, J. Catal., 230, 75, 10.1016/j.jcat.2004.11.005 Kim, 2011, Effect of CeO2 addition to Rh/Al2O3 catalyst on N2O decomposition, Chem. Eng. J., 169, 173, 10.1016/j.cej.2011.03.001 Panagiotopoulou, 2006, Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction, Catal. Today, 112, 49, 10.1016/j.cattod.2005.11.026 Laosiripojana, 2005, Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B, 60, 107, 10.1016/j.apcatb.2005.03.001 Pompeo, 2009, Stability improvements of Ni/alpha-Al2O3 catalysts to obtain hydrogen from methane reforming, Int. J. Hydrogen Energy, 34, 2260, 10.1016/j.ijhydene.2008.12.057 Goguet, 2004, Spectrokinetic investigation of reverse water–gas-shift reaction intermediates over a Pt/CeO2 catalyst, J. Phys. Chem. B, 108, 20240, 10.1021/jp047242w Ye, 2008, Steam reforming of ethanol over Ni/CexTi1−xO2 catalysts, Int. J. Hydrogen Energy, 33, 6602, 10.1016/j.ijhydene.2008.08.036 Yang, 2011, Influence of the structure of TiO2, CeO2, and CeO2–TiO2 supports on the activity of Ru catalysts in the catalytic wet air oxidation of acetic acid, Rare Metals, 30, 488, 10.1007/s12598-011-0417-z Liu, 2008, Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas, Catal. Commun., 9, 51, 10.1016/j.catcom.2007.05.002 Kim, 2012, Effect of pretreatment time in dry reforming over Ni/TiO2 catalyst, J. Chem. Eng. Jpn., 45, 41, 10.1252/jcej.11we080 Yan, 2003, Activation of methane to syngas over a Ni/TiO2 catalyst, Appl. Catal. A, 239, 43, 10.1016/S0926-860X(02)00351-4 Bellido, 2009, Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane, Appl. Catal. A, 358, 215, 10.1016/j.apcata.2009.02.014 Hou, 2004, Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane, Appl. Suf. Sci., 233, 58, 10.1016/j.apsusc.2004.03.223 Castro Luna, 2008, Carbon dioxide reforming of methane over a metal modified Ni–Al2O3 catalyst, Appl. Catal. A, 343, 10, 10.1016/j.apcata.2007.11.041 Pechimuthu, 2007, Deactivation studies over Ni–K/CeO2–Al2O3 catalyst for dry reforming of methane, Ind. Eng. Chem. Res., 46, 1731, 10.1021/ie061389n Kim, 2012, A study on the effect of support’s reducibility on the reverse water gas shift reaction over Pt catalysts, Appl. Catal. A, 423–424, 100 Kim, 2012, The effect of the morphological characteristics of TiO2 support on reverse water gas shift reaction over Pt/TiO2 catalysts, Appl. Catal. B, 119–120, 100 Kim, 2013, A study of the selectivity on reverse water gas shift reaction over Pt/TiO2 catalysts, Fuel Process. Technol., 108, 47, 10.1016/j.fuproc.2012.04.003