Gut microbiota changes in the extreme decades of human life: a focus on centenarians
Tóm tắt
Từ khóa
Tài liệu tham khảo
Biagi E, Rampelli S, Turroni S et al (2016) The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev. doi: 10.1016/j.mad.2016.12.013
Candela M, Biagi E, Turroni S et al (2015) Dynamic efficiency of the human intestinal microbiota. Crit Rev Microbiol 41:165–171. doi: 10.3109/1040841X.2013.813900
Rampelli S, Candela M, Turroni S et al (2015) Microbiota and lifestyle interactions through the lifespan. Trends Food Sci Technol 57:265–272. doi: 10.1016/j.tifs.2016.03.003
Garagnani P, Giuliani C, Pirazzini C et al (2013) Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: a proof of principle on type 2 diabetes. Aging (Albany NY) 5:373–385
Fortney K, Dobriban E, Garagnani P et al (2015) Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. PLoS Genet 11:e1005728. doi: 10.1371/journal.pgen.1005728
Horvath S, Pirazzini C, Bacalini MG et al (2015) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7:1159–1170. doi: 10.18632/aging.100861
Collino S, Montoliu I, Martin FPJ et al (2013) Metabolic signatures of extreme longevity in northern italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8(3):e56564. doi: 10.1371/journal.pone.0056564
Biagi E, Franceschi C, Rampelli S et al (2016) Gut microbiota and extreme longevity. Curr Biol. doi: 10.1016/j.cub.2016.04.016
Giuliani C, Barbieri C, Li M et al (2014) Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra-deep sequencing. Aging (Albany NY) 6:454–467. doi: 10.18632/aging.100661
Franceschi C, Bonafè M (2003) Centenarians as a model for healthy aging. Biochem Soc Trans 31:457–461. doi: 10.1042/BST0310457
Kheirbek RE, Fokar A, Shara N et al (2017) Characteristics and incidence of chronic illness in community-dwelling predominantly male US veteran centenarians. J Am Geriatr Soc. doi: 10.1111/jgs.14900
Perls T, Kunkel LM, Puca AA (2002) The genetics of human longevity. J Am Geriatr Soc 50:359–368. doi: 10.1046/j.1532-5415.2002.49283.x
Schoenmaker M, Jm De Craen A, Hem De Meijer P et al (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet 14:79–84. doi: 10.1038/sj.ejhg.5201508
Bucci L, Ostan R, Cevenini E et al (2016) Centenarians’ offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging (Albany NY) 8:1–11. doi: 10.18632/aging.100912
Terry DF, Wilcox ÃMA, Mccormick MA et al (2004) Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. JAGS 52:2074–2076. doi: 10.1111/j.1532-5415.2004.52561.x
Atzmon G, Schechter C, Greiner W et al (2004) Clinical phenotype of families with longevity. J Am Geriatr Soc 52:274–277
Ikeda A, Iso H, Toyoshima H et al (2006) Parental longevity and mortality amongst Japanese men and women: the JACC Study. J Intern Med 259:285–295. doi: 10.1111/j.1365-2796.2005.01609.x
Caselli G, Pozzi L, Vaupel JW et al (2006) Family clustering in Sardinian longevity: a genealogical approach. Exp Gerontol. doi: 10.1016/j.exger.2006.05.009
Ostan R, Bucci L, Capri M et al (2008) Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15:224–240. doi: 10.1159/000156466
Monti D, Ostan R, Borelli V et al (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev. doi: 10.1016/j.mad.2016.12.008
Franceschi C, Valensin S, Bonafè M et al (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 35:879–896
Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16
Franceschi C, Bonafè M, Valensin S et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x
Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. doi: 10.1016/j.mad.2006.11.016
Ginaldi L, Demartinis M, Monti D, Franceschi C (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26:79–84. doi: 10.1016/j.it.2004.11.005
Franceschi C, Garagnani P, Vitale G et al (2017) Inflammaging and “Garb-aging”. Trends Endocrinol Metab 28:199–212. doi: 10.1016/j.tem.2016.09.005
Christensen K, Thinggaard M, Oksuzyan A et al (2013) Physical and cognitive functioning of people older than 90 years: a comparison of two Danish cohorts born 10 years apart. Lancet 382:1507–1513. doi: 10.1016/S0140-6736(13)60777-1
Department of Economic and Social Affairs, Population Division (2015) World population prospects: The 2015 revision. Key findings and advance tables. Working paper no. ESA/P/WP.241. United Nation, New York
Collado MC, Rautava S, Aakko J et al (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129. doi: 10.1038/srep23129
Isolauri E, Sherman PM, Walker WA (eds) (2017) Intestinal microbiome: Functional aspects in health and disease. Nestlé nutrition institute workshop sries, vol 88. Nestec Ltd., Vevey/S. Karger AG, Basel, pp 11–21. doi: 10.1159/000455209
Douwes J, Cheng S, Travier N et al (2008) Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 32:603–611. doi: 10.1183/09031936.00033707
Conrad ML, Ferstl R, Teich R et al (2009) Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 206:2869–2877. doi: 10.1084/jem.20090845
Rutayisire E, Huang K, Liu Y, Tao F (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol 16:86. doi: 10.1186/s12876-016-0498-0
Edwards CA (2017) Determinants and duration of impact of early Gut bacterial colonization. Ann Nutr Metab. doi: 10.1159/000466711
Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Sci (Washington, DC) 330:1768–1773. doi: 10.1126/science.1195568.Has
Biagi E, Candela M, Fairweather-Tait S et al (2012) Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34:247–267. doi: 10.1007/s11357-011-9217-5
Clarke G, Stilling RM, Kennedy PJ et al (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238. doi: 10.1210/me.2014-1108
Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047. doi: 10.1111/1574-6976.12075
Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science (80-) 308:1635–1638. doi: 10.1126/science.1110591
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. doi: 10.1038/nature11550
Candela M, Biagi E, Brigidi P et al (2014) Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev 136–137:70–75. doi: 10.1016/j.mad.2013.12.004
Claesson MJ, Jeffery IB, Conde S et al (2016) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. doi: 10.1038/nature11319
Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci 108:4586–4591. doi: 10.1073/pnas.1000097107
Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323. doi: 10.1038/nri2515
Guigoz Y, Doré J, Schiffrin EJ (2008) The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11:13–20. doi: 10.1097/MCO.0b013e3282f2bfdf
Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186. doi: 10.1111/j.1365-2672.2007.03400.x
Buford TW (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5(1):80. doi: 10.1186/s40168-017-0296-0
Jackson M, Jeffery IB, Beaumont M et al (2016) Signatures of early frailty in the gut microbiota. Genome Med 8:8. doi: 10.1186/s13073-016-0262-7
Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(455–466):e4. doi: 10.1016/j.chom.2017.03.002
O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1216. doi: 10.1126/science.aac8469
Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667. doi: 10.1371/journal.pone.0010667
Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J (2016) Gut microbiota signatures of longevity. Curr Biol 26(18):R832–R833. doi: 10.1016/j.cub.2016.08.015
Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149–161. doi: 10.1016/j.immuni.2007.02.004
Schnorr SL, Candela M, Rampelli S et al (2014) Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654. doi: 10.1038/ncomms4654
Rampelli S, Schnorr SL, Consolandi C et al (2015) Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol 25:1682–1693. doi: 10.1016/j.cub.2015.04.055
De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. doi: 10.1073/pnas.1005963107
Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. doi: 10.1038/nature11053
Smits SA, Leach J, Sonnenburg ED et al (2017) Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357(6353):802–806. doi: 10.1126/science.aan4834
Inzitari M, Doets E, Bartali B et al (2011) Nutrition in the age-related disablement process. J Nutr Health Aging 15:599–604
Martha A, Christos S, Konstantinos M et al (2011) Age, weight and obesity. Maturitas 71:115–119. doi: 10.1016/j.maturitas.2011.11.015
Wang F, Yu T, Huang G et al (2015) Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol 25:1195–1204. doi: 10.4014/jmb.1410.10014
Roggenbuck D, Reinhold D, Baumgart DC et al (2016) Autoimmunity in Crohn’s disease—a putative stratification factor of the clinical phenotype. Adv Clin Chem 77:77–101. doi: 10.1016/bs.acc.2016.06.002
Gu S, Chen Y, Zhang X et al (2016) Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes Infect 18:30–38. doi: 10.1016/j.micinf.2015.09.008
Lange K, Buerger M, Stallmach A, Bruns T (2016) Effects of antibiotics on gut microbiota. Dig Dis 34:260–268. doi: 10.1159/000443360
Rossen NG, Fuentes S, Boonstra K et al (2015) The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II. J Crohns Colitis 9:342–348. doi: 10.1093/ecco-jcc/jju023
Scher JU, Ubeda C, Artacho A et al (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol (Hoboken NJ) 67:128–139. doi: 10.1002/art.38892
Alam MZ, Alam Q, Kamal MA et al (2014) A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer’s disease pathogenicity: an update. CNS Neurol Disord Drug Targets 13:383–390
Tagliabue A, Elli M (2013) The role of gut microbiota in human obesity: recent findings and future perspectives. Nutr Metab Cardiovasc Dis 23:160–168. doi: 10.1016/j.numecd.2012.09.002
Hullar MAJ, Lampe JW (2012) The gut microbiome and obesity. Nestle Nutr Inst Workshop Ser 73:67–79. doi: 10.1159/000341288
Odamaki T, Kato K, Sugahara H et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90. doi: 10.1186/s12866-016-0708-5
Montoliu I, Scherer M, Beguelin F et al (2014) Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 6:9–25. doi: 10.18632/aging.100630
Cheng S, Larson MG, McCabe EL et al (2015) Distinct metabolomic signatures are associated with longevity in humans. Nat Commun 6:6791. doi: 10.1038/ncomms7791
Cai D, Zhao S, Li D et al (2016) Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients. doi: 10.3390/nu8090564
Ridlon JM, Bajaj JS (2015) The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B 5:99–105. doi: 10.1016/j.apsb.2015.01.006
Ridlon JM, Harris SC, Bhowmik S et al (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7:22–39. doi: 10.1080/19490976.2015.1127483
Petra AI, Panagiotidou S, Hatziagelaki E et al (2015) Gut-microbiota–brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995. doi: 10.1016/j.clinthera.2015.04.002
Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–1089. doi: 10.1038/nm.4185
Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541. doi: 10.1038/nature10554
Hornig M (2013) The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol 25:488–795. doi: 10.1097/BOR.0b013e32836208de
Skowrońska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62:731–737. doi: 10.1016/j.neuint.2012.10.013
Sheedy JR, Wettenhall REH, Scanlon D et al (2009) Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 23:621–628
Qureshi MO, Khokhar N, Shafqat F (2014) Ammonia levels and the severity of hepatic encephalopathy. J Coll Physicians Surg Pak 24:160–163
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi: 10.1038/nrn3346
Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272. doi: 10.1089/jmf.2014.7000
Freestone PPE, Haigh RD, Lyte M (2008) Catecholamine inotrope resuscitation of antibiotic-damaged Staphylococci and its blockade by specific receptor antagonists. J Infect Dis 197:1044–1052. doi: 10.1086/529202
O’Mahony SM, Clarke G, Borre YE et al (2015) Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behav Brain Res 277:32–48. doi: 10.1016/j.bbr.2014.07.027
Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota–gut–brain axis. Neuropharmacology 112:399–412. doi: 10.1016/j.neuropharm.2016.07.002
Stone TW, Darlington LG (2013) The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 169:1211–1227. doi: 10.1111/bph.12230
Keszthelyi D, Troost FJ, Masclee AA (2009) Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 21:1239–1249. doi: 10.1111/j.1365-2982.2009.01370.x
Kaszaki J, Erces D, Varga G et al (2012) Kynurenines and intestinal neurotransmission: the role of N-methyl-d-aspartate receptors. J Neural Transm 119:211–223. doi: 10.1007/s00702-011-0658-x
Heijtz RD, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052. doi: 10.1073/pnas.1010529108
Clarke G, Grenham S, Scully P et al (2013) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. doi: 10.1038/mp.2012.77
Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463. doi: 10.1016/j.cell.2013.11.024
Yang Y, Sauve AA (2016) NAD + metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta Proteins Proteom 1864:1787–1800. doi: 10.1016/j.bbapap.2016.06.014
Verdin E (2015) NAD + in aging, metabolism, and neurodegeneration. Science (80-) 350:1208–1213. doi: 10.1126/science.aac4854
Garrido A, Djouder N (2017) NAD + deficits in age-related diseases and cancer. Trends Cancer 3(8):593–610. doi: 10.1016/j.trecan.2017.06.001
Quintana FJ, Sherr DH (2013) Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 65:1148–1161. doi: 10.1124/pr.113.007823
Pertovaara M, Raitala A, Lehtimäki T et al (2006) Indoleamine 2,3-dioxygenase activity in nonagenarians is markedly increased and predicts mortality. Mech Ageing Dev 127:497–499. doi: 10.1016/j.mad.2006.01.020
Zelante T, Iannitti RG, Fallarino F et al (2014) Tryptophan feeding of the IDO1–AhR axis in host-microbial symbiosis. Front Immunol 5:640. doi: 10.3389/fimmu.2014.00640
Bessede A, Gargaro M, Pallotta MT et al (2015) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190. doi: 10.1038/nature13323
Mezrich JD, Fechner JH, Zhang X et al (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198. doi: 10.4049/jimmunol.0903670
Rampelli S, Candela M, Turroni S et al (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 5:902–912. doi: 10.18632/aging.100623
Badawy A (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1178646917691938. doi: 10.1177/1178646917691938
Brown-Borg HM, Buffenstein R (2016) Cutting back on the essentials: can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev 39:87–95. doi: 10.1016/j.arr.2016.08.007
Welford RWD, Vercauteren M, Trébaul A et al (2016) Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation. Sci Rep 6:30059. doi: 10.1038/srep30059
Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141. doi: 10.1016/j.semcdb.2015.03.002
Reynolds GP, Pearson SJ (1989) Increased brain 3-hydroxykynurenine in Huntington’s disease. Lancet (Lond Engl) 2:979–980
Sardar AM, Bell JE, Reynolds GP (1995) Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients. J Neurochem 64:932–935
Ogawa T, Matson WR, Beal MF et al (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706
Noristani HN, Verkhratsky A, Rodríguez JJ (2012) High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer’s disease. Aging Cell 11:810–822. doi: 10.1111/j.1474-9726.2012.00845.x
Arosio B, Ostan R, Mari D et al (2017) Cognitive status in the oldest old and centenarians: a condition crucial for quality of life methodologically difficult to assess. Mech Ageing Dev 165(Pt B):185–194. doi: 10.1016/j.mad.2017.02.010
Perls T (2004) Dementia-free centenarians. Exp Gerontol 39:1587–1593. doi: 10.1016/j.exger.2004.08.015
Cattaneo A, Cattane N, Galluzzi S et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. doi: 10.1016/j.neurobiolaging.2016.08.019
Pistollato F, Sumalla Cano S, Elio I et al (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74:624–634. doi: 10.1093/nutrit/nuw023
Tremlett H, Bauer KC, Appel-Cresswell S et al (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382. doi: 10.1002/ana.24901
Unger MM, Spiegel J, Dillmann K-U et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. doi: 10.1016/j.parkreldis.2016.08.019
Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12. doi: 10.1016/j.cell.2016.11.018
Felice VD, Quigley EM, Sullivan AM et al (2016) Microbiota–gut–brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8. doi: 10.1016/j.parkreldis.2016.03.012
Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503. doi: 10.1113/JP273106
Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF (2015) Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 38:13–25
Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558:263–275. doi: 10.1113/jphysiol.2004.063388
Foster JA, McVey Neufeld K-A (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312. doi: 10.1016/j.tins.2013.01.005
Caracciolo B, Xu W, Collins S, Fratiglioni L (2014) Cognitive decline, dietary factors and gut–brain interactions. Mech Ageing Dev 136:59–69. doi: 10.1016/j.mad.2013.11.011
Bajaj JS, Ridlon JM, Hylemon PB et al (2012) Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 302:G168–G175. doi: 10.1152/ajpgi.00190.2011
Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255-e119. doi: 10.1111/j.1365-2982.2010.01620.x
Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401. doi: 10.1053/j.gastro.2013.02.043 (1401e.1–4)
Liu X, Cao S, Zhang X (2015) Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. J Agric Food Chem 63:7885–7895. doi: 10.1021/acs.jafc.5b02404
Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726. doi: 10.1016/j.biopsych.2013.05.001
De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821. doi: 10.1136/gutjnl-2015-309957
MacFabe DF (2015) Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis 26:28177. doi: 10.3402/mehd.v26.28177
David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. doi: 10.1038/nature12820
Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C (2017) The mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev. doi: 10.1093/nutrit/nux013
Derkinderen P, Shannon KM, Brundin P (2014) Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 29:976–979. doi: 10.1002/mds.25882
Vaiserman AM, Koliada AK, Marotta F (2017) Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev 35:36–45. doi: 10.1016/j.arr.2017.01.001
Zhang C, Li S, Yang L et al (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. doi: 10.1038/ncomms3163
Jonkers DMAE (2016) Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Best Pract Res Clin Gastroenterol 30:161–172. doi: 10.1016/j.bpg.2016.02.006
Rampelli S, Candela M, Severgnini M et al (2013) A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J Nutr Health Aging 17:166–172. doi: 10.1007/s12603-012-0372-x
Pérez Martínez G, Bäuerl C, Collado MC (2014) Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benef Microbes 5:235–246. doi: 10.3920/BM2013.0079
Rondanelli M (2015) Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases 3:156. doi: 10.12998/wjcc.v3.i2.156
Saraswati S, Sitaraman R (2015) Aging and the human gut microbiota—from correlation to causality. Front Microbiol 5:764. doi: 10.3389/fmicb.2014.00764
Thushara RM, Gangadaran S, Solati Z et al (2016) Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food Funct 7:632–642. doi: 10.1039/C5FO01190F
Nakagawa H, Shiozaki T, Kobatake E et al (2016) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15:227–236. doi: 10.1111/acel.12431
Kwon G, Lee J, Lim Y-H (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713. doi: 10.1038/srep31713
Grompone G, Martorell P, Llopis S et al (2012) Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7:e52493. doi: 10.1371/journal.pone.0052493
Komura T, Ikeda T, Yasui C et al (2013) Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology 14:73–87. doi: 10.1007/s10522-012-9411-6
Park S-H, Kim K-A, Ahn Y-T et al (2015) Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol 15:49. doi: 10.1186/s12866-015-0386-8
Matsumoto M, Kurihara S, Kibe R et al (2011) Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One 6:e23652. doi: 10.1371/journal.pone.0023652
Xu R, Shang N, Li P (2011) In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 17:226–231. doi: 10.1016/j.anaerobe.2011.07.010
Young VB, Hayden MK (2016) Environmental management in the gut: fecal transplantation to restore the intestinal ecosystem. Infect Dis (Lond Engl) 48:593–595. doi: 10.1080/23744235.2016.1177200
Rao K, Safdar N (2016) Fecal microbiota transplantation for the treatment of Clostridium difficile infection. J Hosp Med 11:56–61. doi: 10.1002/jhm.2449
Konturek PC, Haziri D, Brzozowski T et al (2015) Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 66:483–491
Choi HH, Cho Y-S (2016) Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin Endosc 49:257–265. doi: 10.5946/ce.2015.117
Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(913–916):e7. doi: 10.1053/j.gastro.2012.06.031
Udayappan SD, Hartstra AV, Dallinga-Thie GM, Nieuwdorp M (2014) Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clin Exp Immunol 177:24–29. doi: 10.1111/cei.12293
Ananthaswamy A (2011) Faecal transplant eases symptoms of Parkinson’s disease. New Sci 209:8–9
Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158. doi: 10.1113/jphysiol.2009.174136
Goodrich JK, Waters JL, Poole AC et al (2014) Human genetics shape the gut microbiome. PubMed commons. Cell 159:789–799. doi: 10.1016/j.cell.2014.09.053.Human
Goodrich JK, Davenport ER, Beaumont M et al (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–743. doi: 10.1016/j.chom.2016.04.017
Garagnani P, Pirazzini C, Giuliani C et al (2014) The three genetics (nuclear DNA, mitochondrial DNA, and gut microbiome) of longevity in humans considered as metaorganisms. Biomed Res Int 2014:1–14. doi: 10.1155/2014/560340
Moeller AH, Caro-Quintero A, Mjungu D et al (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382. doi: 10.1126/science.aaf3951
Groussin M, Mazel F, Sanders J et al (2017) Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun 8:14319. doi: 10.1038/ncomms14319
Bonder MJ, Kurilshikov A, Tigchelaar EF et al (2016) The effect of host genetics on the gut microbiome. Nat Genet 48:1407–1412. doi: 10.1038/ng.3663
Wang J, Thingholm LB, Skieceviciene J et al (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406. doi: 10.1038/ng.3695
Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38(9):633–647. doi: 10.1016/j.it.2017.06.003
Liang L, Ai L, Qian J et al (2015) Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes. Sci Rep 5:11763. doi: 10.1038/srep11763
Liu S, da Cunha AP, Rezende RM et al (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19:32–43. doi: 10.1016/j.chom.2015.12.005
Capri M, Santoro A, Garagnani P et al (2014) Genes of human longevity: an endless quest? Curr Vasc Pharmacol 12(5):707–717
Xie H, Guo R, Zhong H et al (2016) Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. doi: 10.1016/j.cels.2016.10.004
Flak MB, Neves JF, Blumberg RS (2013) Immunology. Welcome to the microgenderome. Science 339:1044–1045. doi: 10.1126/science.1236226
Markle JGM, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. doi: 10.1126/science.1233521
Markle JG, Frank DN, Adeli K et al (2014) Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes 5:485–493. doi: 10.4161/gmic.29795
Org E, Mehrabian M, Parks BW et al (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7:313–322. doi: 10.1080/19490976.2016.1203502
Wallis A, Butt H, Ball M et al (2016) Support for the microgenderome invites enquiry into sex differences. Gut Microbes 976:1–7. doi: 10.1080/19490976.2016.1256524
Meighani A, Hart BR, Mittal C et al (2016) Predictors of fecal transplant failure. Eur J Gastroenterol Hepatol 28:826–830. doi: 10.1097/MEG.0000000000000614
Dominianni C, Sinha R, Goedert JJ et al (2015) Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One 10:1–14. doi: 10.1371/journal.pone.0124599