Interpolation and non-commutative integration

Springer Science and Business Media LLC - Tập 104 - Trang 187-207 - 1975
Jaak Peetre1, Gunnar Sparr1
1Lund

Tóm tắt

We extend the interpolation theory of a previous publication to the case of non-commutative Lp spaces in the sense of Segal. As illustrations we give some simple concrete applications (Fourier transform on unimodular groups, Weyl transform, spinor transform).

Tài liệu tham khảo

J. Bergh,On the interpolation of normal linear spaces, a necessary condition, technical report, Lund, 1971. J. Bergh,A generalization of Steffensen's inequality, J. Math. Anal. Appl.,41 (1973), pp. 187–191. M. Cotlar, personal communication. A. Erdélyi et al.,Higher transcendental functions, I–III, McGraw-Hill, New York, 1953–1955. J. C. Goh'berg - M. G. Krein,Introduction to the theory of non-selfadjoint operators, Moscow, 1965 (in Russian). R. A. Kunze,L p Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc.,89 (1958), pp. 519–540. R. Lavine,The Weyl transform. Fourier analysis of operators in L 2 spaces, thesis, M.I.T., 1965. J. Löfström,Besov spaces in the theory of approximation, Ann. Mat. Pura Appl.,75 (1970), pp. 93–184. G. G. Lorentz -T. Shimogaki, Interpolation theorems for the pairs of spaces (Lp, L∞) and (L1, Lq), Trans. Amer. Math. Soc.,159 (1971), pp. 207–221. C. Mérucci - Pham The Lai,Caractérisation par interpolation des idéaux de R. Schatten, C. R. Acad. Sci. Paris,274 (1972), pp. 1912–1914. B. S. Mitjagin,An interpolation theorem for modular spaces, Mat. Sbornik,66 (1965), pp. 473–482 (in Russian). R. Oloff, Interpolation zwischen den Klassen\(\mathfrak{S}_p \) von Operatoren in Hilberträumen, Math. Nachr.,46 (1970), pp. 209–218. V. J. Ovčinnikov,On the s-numbers of measurable operators, Funkcional. Anal. i Priložen.,4, no. 3 (1970), pp. 78–85 (in Russian). J. Peetre,On the connection between the theory of interpolation spaces and approximation theory, Proc. Conf. Constructive Theory of Functions, Akdémiai Kiado, Budapest (1971), pp. 351–363. J. Peetre,Interpolationsräume, Anger (ed.), Elliptische Differenzialgleichungen, bd. I, Akademie Verlag, Berlin (1971), pp. 93–101. J. Peetre,A new approach in interpolation spaces, Studia Math.,34 (1970), pp. 23–42. J. Peetre,Banch couples - I:Elementary theory, technical report, Lund, 1971. J. Peetre,The Weyl transform and Laguerre polynomials, Matematiche (Catania), to appear. J. Peetre,Applications de la théorie des espaces d'interpolation dans l'Analyse Harmonique, Ricerche Mat.,15 (1966), pp. 3–36. J. Peetre,Non commutative interpolation, Matematiche (Catania),25 (1970), pp. 1–15. J. Peetre -G. Sparr,Interpolation of normed Abelian groups, Ann. Mat. Pura Appl.,92 (1972), pp. 217–262. A. A. Sedaev -E. Semenov,On the possibility of describing interpolation spaces in terms of the K-method of Peetre, Optimizaceja,4 (1971), pp. 98–114 (in Russian). E. Segal,A non-commutative extension of abstract integration, Ann. Math.,57 (1953), pp. 401–457. I. E. Segal,Transformation of operators and symplectic automorphisms over a locally compact group, Mat. Scand.,13 (1963), pp. 31–43. I. E. Segal,Symplectic structures and the quantization problem for wave equations, Proc. Conf. on Symplectic Geometry and Mathematical Physics, Rome, jan. 1973, Academic Press (to appear). I. E. Segal, personal communication. E. Stein,Analytic continuation of group representations, Advances in Math.,4 (1970), pp. 172–207. E. Stein,Interpolation of linear operators, Trans. Amer. Math. Soc.,83 (1956), pp. 482–492. W. Stinespring,Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc.,90 (1959), pp. 15–56. R. F. Streater,Interpolating norms for orthogonal and spin Lie algebras, Proc. Conf. on Symplectic Geometry and Mathematical Physics, Rome, jan. 1973, Academic Press, (to appear). H. Triebel,Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Invent. Math.,4 (1967), pp. 275–293. A. Zygmund,Trigonometric series, I–II, Cambridge, 1958.